• Title/Summary/Keyword: Photon spectra

Search Result 105, Processing Time 0.021 seconds

Preparation and Nonlinear Optical Properties of CuCl-doped Nonlinear Optical Glasses : II. Nonlinear Optical Properties (CuCl 미립자가 분산된 비선형 광학유리의 제조와 비선형 광특성: II. 비선형 광특성)

  • 윤영권;한원택;이민영
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.429-435
    • /
    • 1997
  • The third order nonlinear optical susceptibilities, {{{{ chi }}(3), of the CuCl doped alumino-borosilicate glasses were measured by the two beam configuration DFWM method and the absorption saturation method, and the measured {{{{ chi }}(3) values were about 10-8 esu in both methods. The response time was estimated to be about 105ps from the time decay curve of the luminescence spectra obtained by time-correlated single-photon counting (TCSPC) method.

  • PDF

MONTE CARLO SIMULATION OF COMPTONIZATION IN A SPHERICAL SHELL GEOMETRY

  • SEON KWANG IL;MIN KYOUNG WOOK;CHOI CHUL SUNG;NAM UK WON
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.45-53
    • /
    • 1994
  • We present the calculation of X -ray spectra produced through Compton scattering of soft X-rays by hot electrons in the spherical shell geometry, using fully relativistic Monte Carlo simulation. With this model, we show that the power-law component, which has been observed in the low luminosity state of low-mass X-ray binaries (LMXBs), is explained physically. From a spectral. analysis, we find that spectral hardness is mainly due to the relative contribution of scattered component. In addition, we see that Wi en spectral features appear when the plasma is optically thick, especially in the high energy range, $E{\gtrsim}100keV$. We suggest that after a number of scattering the escape probability approaches an asymptotic form depending on the geometry of the scattering medium rather than on the initial photon spectrum.

  • PDF

Optical Analysis of p-Type ZnO:Al Thin Films

  • Jin, Hu-Jie;So, Byung-Moon;Park, Bok-Kee;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.68-69
    • /
    • 2007
  • We have prepared p-type ZnO:Al films in pure oxygen ambient on n-type Si (100) and homo buffer layers by RF magnetron sputtering system. Hall effect measurement shows that the film annealed at $600^{\circ}C$ possesses p-type conductivity and the film annealed $800^{\circ}C$ does not. PL spectra show different properties of p- and n-type ZnO film. The corresponding peaks of PL spectra of p- and n-type show at about same positions. The intensities of high photon energy of n-type film on buffer shows decreasing tendency.

  • PDF

Probing Polarization Modes of Ag Nanowires with Hot Electron Detection on $Au/TiO_2$ Nanodiodes

  • Lee, Young Keun;Lee, Jaemin;Lee, Hyosun;Lee, Jung-Yong;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.225-225
    • /
    • 2013
  • Nanostructured noble metals have been attractive for their unusual optical properties and are widely utilized for various purposes. The optical properties mainly originating from collective electron oscillation can assist direct energy conversion via surface plasmon resonances. Here, we investigated the effect of surface plasmons of silver nanowires on the generation of hot electrons. It is reported that the surface plasmons of silver nanowires exhibit longitudinal and transverse modes, depending on the aspect ratio of the nanowires. In order to measure the hot electron flow through the metallic nanowires, chemically modified Au/TiO2 Schottky diodes were employed as the electric contact. The silver nanowires were deposited on a Au metal layer via the spray method to control uniformity and the amount of silver nanowire deposited. We measured the hot electron flow generated by photon absorption on the silver nanowires deposited on the Au/TiO2 Schottky diodes. The incident photon-to-current efficiency was measured a function of the photon energy, revealing two polarization modes of siliver nanowires: transverse and longitudinal modes. UV-Vis spectra exhibited two polarization modes, which are also consistent with the photocurrent measurements. Good correlation between the IPCE and UV-vis measurements suggests that hot electron measurement on nanowires on nanodiodes is a useful way to reveal the intrinsic properties of surface plasmons of nanowires.

  • PDF

Experimental Determinations of Coherent Multidimensional Vibrational Spectroscopy

  • Besemann, Daniel;Condon, Nicholas;Meyer, Kent;Zhao, Wei;Wright, John C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.8
    • /
    • pp.1119-1125
    • /
    • 2003
  • Coherent multidimensional vibrational spectroscopy is a new technique for establishing correlations between features in vibrational spectra that are caused by intra- and intermolecular interactions. These interactions cause cross-peaks between vibrational transitions that reflect the coupling. In this paper, we use Doubly Vibrationally Enhanced Infrared Spectroscopy (DOVE-IR) and DOVE-Raman processes to obtain coherent two dimensional vibrational spectra. The spectra are fitted to obtain the dephasing rates and third order susceptibilities $(χ^{(3)})$ for the nonlinear processes. We show that the DOVE $χ^{(3)}$ values are directly related to the molar absorptivities and Raman $χ^{(3)}$. We then use these relationships to obtain estimates for the $χ^{(3)}$ of the stimulated photon echo and $χ^{(5)}$ of the six wave mixing spectroscopies, respectively. We also predict the ratio of the cascaded four wave mixing signal to the six wave mixing signal.

Calculation of Energy Spectra for 6 MeV Electron Beam of LINAC Using MCNPX (MCNPX를 이용한 선형가속기의 6 MeV 전자선에 대한 에너지분포 계산)

  • Lee, Jeong-Ok;Jeong, Dong-Hyeok
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.224-231
    • /
    • 2006
  • The electron energy spectra for 6 MeV electron beam were calculated using a MCNPX code. The head of the linear accelerator (ML6M; Mitsubishi, Japan) was modelled for this study. The energy spectrum of the initial electron beam was assumed to be Gaussian and the mean energy was determined by evaluating the measured and calculated values of $R_{50}$ and dose profiles in air. The energy distributions for electrons and photons at the interested points in the head of the linear accelerator were calculated by appling the Initial beam parameters. The effect of contaminant photons on depth dose curves were estimated by the photon energy spectra at the end of the applicator.

  • PDF

Resonant inelastic X-ray scattering of tantalum double perovskite structures

  • Oh, Ju Hyun;Kim, Jung Ho;Jeong, Jung Hyun;Chang, Seo Hyoung
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1225-1229
    • /
    • 2018
  • In this paper, we investigated the electronic structures and defect states of $SrLaMgTaO_6$ (SLMTO) double perovskite structures by using resonant inelastic x-ray scattering. Recently, $Eu^{3+}$ doped SLMTO red phosphors have been vigorously investigated due to their higher red emission efficiency compared to commercial white light emitting diodes (W-LED). However, a comprehensive understanding on the electronic structures and defect states of host SLMTO compounds, which are specifically related to the W-LED and photoluminescence (PL), is far from complete. Here, we found that the PL spectra of SLMTO powder compounds sintered at a higher temperature, $1400^{\circ}C$, were weaker in the blue emission regions (at around 400 nm) and became enhanced in near infrared (NIR) regions compared to those sintered at $1200^{\circ}C$. To elucidate the difference of the PL spectra, we performed resonant inelastic x-ray spectroscopy (RIXS) at Ta L-edge. Our RIXS result implies that the microscopic origin of different PL spectra is not relevant to the Ta-related defects and oxygen vacancies.

A 3-D Measuring System of Thermoluminescence Spectra and Thermoluminescence of CaSO4 : Dy, P (열자극발광 스펙트럼의 3차원 측정 장치와 CaSO4 : Dy, P의 열자극발광)

  • Lee, Jung-Il;Moon, Jung-Hak;Kim, Douk-Hoon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.71-75
    • /
    • 2001
  • In this paper, a three-dimensional measuring system of thermoluminescence(TL) spectra based on temperature, wavelength and luminescence intensity was introduced. The system was composed of a spectrometer, temperature control unit for thermal stimulation, photon detector and personal computer for control the entire system. Temperature control was achieved by using feedback to ensure a linear-rise in the sample temperature. Digital multimeter(KEITHLEY 195A) measures the electromotive force of Copper-Constantan thermocouple and then transmits the data to the computer through GPIB card. The computer converts this signal to temperature using electromotive force-temperature table in program, and then control the power supply through the D/A converter. The spectrometer(SPEX 1681) is controlled by CD-2A, which is controlled by the computer through RS-232 communication port. For measuring the luminescence intensity during the heating run, the electrometer(KEITHLEY 617) measures the anode current of photomultiplier tube(HAMAMATSU R928) and transmits the data to computer through the A/D converter. And, we measured and analyzed thermoluminescence of $CaSO_4$ : Dy, P using the system. The measuring range of thermoluminescence spectra was 300K-575K and 300~800 nm, $CaSO_4$ : Dy. P was fabricated by the Yamashita's method in Korea Atomic Energy Research Institute(KAERI) for radiation dosimeter. Thermoluminesce spectra of the $CaSO_4$ : Dy, P consist of two main peak at temperature of $205^{\circ}C$, wavelength 476 nm and 572 nm and with minor ones at 658 nm and 749 nm.

  • PDF

Empirical Determination of a CT X-ray Spectra by Numerical Analysis using Transmission Data (투과선량의 수치해석에 의한 전산화단층영상장치 X선의 에너지 분포결정)

  • 최태진;김옥배;서수지
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.35-43
    • /
    • 1997
  • The knowledge of x-ray spectra is highly desirable in some investigation involves the differential penetrating power and absorption coefficient correction of various photon beam. The transmission data were obtained from the 80 kVp and 120 kVp of CT x-ray beam with the aluminium filter which is designed in a 30 cm of diameter and pipe-typed filter was prepared from 5.0 mm upto 92.3 mm of thickness. To obtain the reconstructed spectra of CT x-ray, the investigator used the iterative numerical analysis which has been extended to include the tungsten characteristics from experimental transmission data with energy interval of 2 keV. Comparison of the calculated transmission data from the reconstructed spectra with that of measurement shows good agreement in both 80 kVp and 120 kVp x-ray beams. This numerical analysis based on iteratively calculation of fractional exposure per energy interval shows the high potential of usefulness of determination the x-ray spectra from the attenuated beam in diagnostic energy range.

  • PDF

Preparation and Properties of $Zn_{1-x}Mg_xO$ Thin Films Prepared by Pulsed Laser Deposition Method (펄스 레이저 증착법을 이용한 $Zn_{1-x}Mg_xO$ 박막의 제작과 특성연구)

  • Suh, Kwang-Jong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.73-76
    • /
    • 2005
  • To widen the band gap of ZnO, we have investigated $Zn_{1-x}Mg_xO(ZMO)$ thin films prepared by pulsed laser deposition on c-plane sapphire substrates at $500^{\circ}C$. From X-ray diffraction patterns, ZMO films show only the (0002) and (0004) diffraction peaks. It means that the flints have the wurtzite structure. Segregation of ZnO and MgO phases is found in the films with x=0.59. All the samples are highly transparent in the visible region and have a sharp absorption edge in the UV region. The shift of absorption edge to higher energy is observed in the films with higher Mg composition. The excitonic nature of the films is clearly appeared in the spectra for all alloy compositions. The optical band-gap ($E_g$) of ZMO films is obtained from the ${\alpha}^2$ vs Photon energy plot assuming ${\alpha}^2\;\propto$ (hv - $E_g$), where u is the absorption coefficient and hv is the photon energy. The value of $E_g$ increases up to 3.72 eV for the films with x=0.35. It is important to adjust Mg composition control for controlling the band-gap of ZMO films.

  • PDF