DOI QR코드

DOI QR Code

Experimental Determinations of Coherent Multidimensional Vibrational Spectroscopy

  • Besemann, Daniel (Department of Chemistry, University of Wisconsin-Madison) ;
  • Condon, Nicholas (Department of Chemistry, University of Wisconsin-Madison) ;
  • Meyer, Kent (Department of Chemistry, University of Wisconsin-Madison) ;
  • Zhao, Wei (Department of Chemistry, University of Wisconsin-Madison) ;
  • Wright, John C. (Department of Chemistry, University of Wisconsin-Madison)
  • Published : 2003.08.20

Abstract

Coherent multidimensional vibrational spectroscopy is a new technique for establishing correlations between features in vibrational spectra that are caused by intra- and intermolecular interactions. These interactions cause cross-peaks between vibrational transitions that reflect the coupling. In this paper, we use Doubly Vibrationally Enhanced Infrared Spectroscopy (DOVE-IR) and DOVE-Raman processes to obtain coherent two dimensional vibrational spectra. The spectra are fitted to obtain the dephasing rates and third order susceptibilities $(χ^{(3)})$ for the nonlinear processes. We show that the DOVE $χ^{(3)}$ values are directly related to the molar absorptivities and Raman $χ^{(3)}$. We then use these relationships to obtain estimates for the $χ^{(3)}$ of the stimulated photon echo and $χ^{(5)}$ of the six wave mixing spectroscopies, respectively. We also predict the ratio of the cascaded four wave mixing signal to the six wave mixing signal.

Keywords

References

  1. Wright, J. C. Int. Rev. Phys. Chem. 2002, 21, 185-255. https://doi.org/10.1080/01442350210124506
  2. Cho, M. In Advances in Mult-Photon Processes and Spectroscopy;1st ed.; Lin, S. H., Villaeys, A. A., Fujimura, Y., Eds.; WorldScientific: Singapore, 1999; Vol. 12, pp 1-72.
  3. Zhao, W.; Wright, J. C. J. Am. Chem. Soc 1999, 121, 10994-10998. https://doi.org/10.1021/ja9926414
  4. Mukamel, S. Principles of Nonlinear Optical Spectroscopy, 1sted.; Oxford University Press: New York, 1995.
  5. Shen, Y. R. The Principles of Nonlinear Optics; Wiley Interscience:New York, 1984.
  6. Levenson, M. D.; Kano, S. S. Introduction to Nonlinear Spectroscopy;Academic Press: New York, 1988.
  7. Lee, D.; Albrecht, A. C. Advances in Infrared and Raman Spectroscopy,1st ed.; Wiley-Heyden: Chichester, 1985; Vol. 12.
  8. Richmond, G. L.; Robinson, J. M.; Shannon, V. L. Prog. Surf. Sci.1988, 28, 1. https://doi.org/10.1016/0079-6816(88)90005-6
  9. Wright, J. C. In Applications of Lasers to Chemical Problems, 1st ed.; Evans, T. R., Ed.; John Wiley&Sons: New York, 1982; p 35.
  10. Wright, J. C.; Carlson, R. J.; Hurst, G. B.; Steehler, J. K.; Riebe,M. T.; Price, B. B.; Nguyen, D. C.; Lee, S. H. Int. Rev. Phys.Chem. 1991, 10, 349-390. https://doi.org/10.1080/01442359109353262
  11. Wright, J. C.; Carlson, R. J.; Riebe, M. T.; Steehler, J. K.; Nguyen,D. C.; Lee, S. H.; Price, B. B.; Hurst, G. B. In VibrationalSpectroscopy and Structure, 1st ed.; Bist, H. D., Durig, J. R.,Sullivan, J. F., Eds.; Elsevier Science Publishers: Amsterdam,1989; Vol. 17B, pp 123-158.
  12. Carlson, R. J.; Wright, J. C. J. Chem. Phys. 1990, 93, 2205-2216. https://doi.org/10.1063/1.459053
  13. Carlson, R. J.; Wright, J. C. J. Chem. Phys. 1990, 92, 5186-5195. https://doi.org/10.1063/1.458553
  14. Carlson, R. J.; Nguyen, D. C.; Wright, J. C. J. Chem. Phys. 1990,92, 1538-1546. https://doi.org/10.1063/1.458084
  15. Carlson, R. J.; Wright, J. C. Anal. Chem. 1991, 63, 1449-1451. https://doi.org/10.1021/ac00014a019
  16. Chen, P. C.; Hamilton, J. P.; Zilian, A.; LaBuda, M. J.; Wright, J.C. Appl. Spectrosc. 1998, 52, 380-392. https://doi.org/10.1366/0003702981943563
  17. Wright, J. C.; Chen, P. C.; Hamilton, J. P.; Zilian, A.; LaBuda, M.J. Appl. Spectrosc. 1997, 51, 949-958. https://doi.org/10.1366/0003702971941601
  18. Hamilton, J. P.; LaBuda, M. J.; Wright, J. C. Chem. Phys. Letters1997, 277, 175-182. https://doi.org/10.1016/S0009-2614(97)00875-0
  19. LaBuda, M. J.; Wright, J. C. Chem. Phys. Letters 1998, 290, 29-35. https://doi.org/10.1016/S0009-2614(98)00478-3
  20. LaBuda, M. J.; Wright, J. C. J. Chem. Phys. 1998, 108, 4112-4122. https://doi.org/10.1063/1.475809
  21. Zhao, W.; Wright, J. C. Phys. Rev. Letters 2000, 84, 1411-1414. https://doi.org/10.1103/PhysRevLett.84.1411
  22. Zhao, W.; Wright, J. C. Phys. Rev. Letters 1999, 83, 1950-1953. https://doi.org/10.1103/PhysRevLett.83.1950
  23. Besemann, D. M.; Condon, N. J.; Murdoch, K. M.; Meyer, K. A.;Zhao, W.; Wright, J. C. Chem. Phys. 2001, 266, 177. https://doi.org/10.1016/S0301-0104(01)00227-0
  24. Murdoch, K. M.; Condon, N. J.; Zhao, W.; Besemann, D. M.;Meyer, K. A.; Wright, J. C. Chem. Phys. Letters 2001, 335, 349. https://doi.org/10.1016/S0009-2614(00)01392-0
  25. Levenson, M. D.; Bloembergen, N. J. Chem. Phys. 1974, 60,1323-1327. https://doi.org/10.1063/1.1681198
  26. Levenson, M. D.; Bloembergen, N. Phys. Rev. B 1974, 10, 4447-4463. https://doi.org/10.1103/PhysRevB.10.4447
  27. Wright, J. C.; Condon, N. J.; Murdoch, K. M.; Besemann, D.;Meyer, K. A. J. Phys. Chem. to be published.
  28. Kwak, K.; Cha, S.; Cho, M.; Wright, J. C. J. Chem. Phys. 2002,117, 5675-5687. https://doi.org/10.1063/1.1501129
  29. Hamm, P.; Lim, M.; Hochstrasser, R. M. J. Phys. Chem. B 1998,102, 6123-6138. https://doi.org/10.1021/jp9813286
  30. Hamm, P.; Lim, M.; Hochstrasser, R. M. Phys. Rev. Letters 1998,81, 5326-5329. https://doi.org/10.1103/PhysRevLett.81.5326
  31. Hamm, P.; Lim, M.; DeGrado, W. F.; Hochstrasser, R. M. Proc.Natl. Acad. Sci. 1999, 96, 2036-2041. https://doi.org/10.1073/pnas.96.5.2036
  32. Hamm, P.; Lim, M.; DeGrado, W. F.; Hochstrasser, R. M. J. Phys.Chem. A 1999, 103, 10049-10053. https://doi.org/10.1021/jp9917650
  33. Hamm, P.; Lim, M.; DeGrado, W. F.; Hochstrasser, R. M. J. Chem.Phys. 2000, 112, 1907-1916. https://doi.org/10.1063/1.480772
  34. Asplund, M. C.; Zanni, M. T.; Hochstrasser, R. M. Proc. Natl.Acad. Sci. 2000, 97, 8219-8224. https://doi.org/10.1073/pnas.140227997
  35. Asplund, M. C.; Lim, M.; Hochstrasser, R. M. Chem. Phys.Letters 2000, 323, 269-277. https://doi.org/10.1016/S0009-2614(00)00496-6
  36. Zanni, M. T.; Asplund, M. C.; Hochstrasser, R. M. J. Chem. Phys.2001, 114, 4579-4590. https://doi.org/10.1063/1.1346647
  37. Zanni, M. T.; Cnanakaran, S.; Stenger, J.; Hochstrasser, R. M. J.Phys. Chem. B 2001, ASAP, May 8, 2001.
  38. Lim, M.; Hamm, P.; Hochstrasser, R. M. Proc. Natl. Acad. Sci.1998, 95, 15215-15320.
  39. Golonzka, O.; Khalil, M.; Demirdoven, N.; Tokmakoff, A. Phys.Rev. Letters 2001, 86, 2154-2157. https://doi.org/10.1103/PhysRevLett.86.2154
  40. Tokmakoff, A. J. Phys. Chem. A 2000, 104, 4247-4255. https://doi.org/10.1021/jp993207r
  41. Khalil, M.; Tokmakoff, A. Chem. Phys. 2001, 266, 213-230. https://doi.org/10.1016/S0301-0104(01)00230-0
  42. Khalil, M.; Demirdoven, N.; Golonzka, O.; Fecko, C. J.; Tokmakoff,A. J. Phys. Chem. A 2000, 104, 5711-5715. https://doi.org/10.1021/jp994455q
  43. Khalil, M.; Golonzka, O.; Demirdoven, N.; Fecko, C. J.; Tokmakoff,A. Chem. Phys. Letters 2000, 321, 231-237. https://doi.org/10.1016/S0009-2614(00)00314-6
  44. Tominaga, K.; Yoshihara, K. Phys. Rev. A 1997, 55, 831. https://doi.org/10.1103/PhysRevA.55.831
  45. Tominaga, K.; Keogh, G. P.; Naitoh, Y.; Yoshihara, K. J. RamanSpectr. 1995, 26, 495-501. https://doi.org/10.1002/jrs.1250260704
  46. Tominaga, K.; Yoshihara, K. Phys. Rev. Letters 1995, 74, 3061-3064. https://doi.org/10.1103/PhysRevLett.74.3061
  47. Tominaga, K.; Yoshihara, K. J. Chem. Phys. 1996, 104, 4419-4426. https://doi.org/10.1063/1.471194
  48. Tokmakoff, A.; Fleming, G. R. J. Chem. Phys. 1997, 106, 2569-2582. https://doi.org/10.1063/1.473361
  49. Tokmakoff, A.; Lang, M. J.; Larsen, D. S.; Fleming, G. R. Chem.Phys. Letters 1997, 272, 48-54. https://doi.org/10.1016/S0009-2614(97)00479-X
  50. Tokmakoff, A.; Lang, M. J.; Larsen, D. S.; Fleming, G. R.;Chernyak, V.; Mukamel, S. Phys. Rev. Letters 1997, 79, 2702-2705. https://doi.org/10.1103/PhysRevLett.79.2702
  51. Steffen, T.; Fourkas, J. T.; Duppen, K. J. Chem. Phys. 1996, 105,7364-7382. https://doi.org/10.1063/1.472594
  52. Steffen, T.; Duppen, K. J. Chem. Phys. 1997, 106, 3854-3864. https://doi.org/10.1063/1.473106
  53. Steffen, T.; Duppen, K. Chem. Phys. Letters 1997, 273, 47-54. https://doi.org/10.1016/S0009-2614(97)00583-6
  54. Steffen, T.; Duppen, K. Phys. Rev. Letters 1996, 76, 1224-1227. https://doi.org/10.1103/PhysRevLett.76.1224
  55. Duppen, K.; Molenkamp, L. W.; Morsink, J. B. W.; Wiersma, D.A.; Trommsdorff, H. P. Chem. Phys. Letters 1981, 84, 421-424. https://doi.org/10.1016/0009-2614(81)80376-4
  56. Ivanecky, J. E.; Wright, J. C. Chem. Phys. Letters 1993, 206, 437-444. https://doi.org/10.1016/0009-2614(93)80164-K
  57. Blank, D. A.; Kaufman, L. J.; Fleming, G. R. J. Chem. Phys.2000, 113, 771-778. https://doi.org/10.1063/1.481851
  58. Blank, D. A.; Kaufman, L. J.; Fleming, G. R. J. Chem. Phys.1999, 111, 3105-3114. https://doi.org/10.1063/1.479591
  59. Kirkwood, J. C.; Ulness, D. J.; Albrecht, A. C.; Stimson, M. J.Chem. Phys. Letters 1998, 293, 417-422. https://doi.org/10.1016/S0009-2614(98)00815-X
  60. Ulness, D. J.; Kirkwood, J. C.; Albrecht, A. C. J. Chem. Phys.1998, 108, 3897-3902. https://doi.org/10.1063/1.475837
  61. Astinov, V.; Kubarych, K. J.; Milne, C. J.; Miller, R. J. D. Chem.Phys. Letters 2000, 327, 334-342. https://doi.org/10.1016/S0009-2614(00)00819-8
  62. Kubarych, K. J.; Milne, C. J.; Lin, S.; Astinov, V.; Miller, R. J. D.J. Chem. Phys. 2002, 116, 2016-2042. https://doi.org/10.1063/1.1429961
  63. Kaufman, L. J.; Heo, J.; Ziegler, L. D.; Fleming, G. R. Phys. Rev.Letters 2002, 88, 207402-207406. https://doi.org/10.1103/PhysRevLett.88.207402
  64. Kaufman, L. J.; Blank, D. A.; Fleming, G. R. J. Chem. Phys.2001, 114, 2312-2332. https://doi.org/10.1063/1.1337042
  65. Richmond, G. L. Anal. Chem. 1997, 69, 537A.
  66. Richmond, G. L. Annu. Rev. Phys. Chem. 2001, 52, 257-265.
  67. Corn, R. M.; Higgins, D. A. Chem. Rev. 1994, 94, 107-125. https://doi.org/10.1021/cr00025a004

Cited by

  1. and Theoretical Estimation of DOVE Four Wave Mixing of Hydrogen Peroxide vol.115, pp.24, 2011, https://doi.org/10.1021/jp202977v
  2. Fully Coherent Triple Sum Frequency Spectroscopy of a Benzene Fermi Resonance vol.117, pp.27, 2013, https://doi.org/10.1021/jp404713x
  3. Raman Second Hyperpolarizability Determination Using Computational Raman Activities and a Comparison with Experiments vol.117, pp.29, 2013, https://doi.org/10.1021/jp400447a
  4. Second Hyperpolarizability of C–H, C–D, and C≡N Stretch Vibrations Determined from Computational Raman Activities and a Comparison with Experiments vol.117, pp.49, 2013, https://doi.org/10.1021/jp4073119
  5. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450