• Title/Summary/Keyword: Photoluminescence intensity

Search Result 478, Processing Time 0.034 seconds

Luminescence properties of novel Sr-Y-Si-Oxynitride yellow phosphor for LED applications (LED용 Sr-Y-Si-계 산질화물 황색 형광체의 발광 특성)

  • Jeong, Ok Geun;Park, Jong Cheon;Ryu, Jeong Ho;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.195-200
    • /
    • 2013
  • Novel Sr-Y-Si-Oxynitride yellow phosphors were synthesized and the effect of calcination temperature, reduction temperature and $Eu^{2+}$ concentration on their luminescence properties were studied. Optimal temperature conditions were found to be $1400^{\circ}C$ and $1300^{\circ}C$ for solid-state reaction and reduction, respectively. The synthesized $Ba_9Y_{2+y}Si_6O_{24-3y}N_{3y}:Eu^{2+}$ phosphors showed a single intense broadband emission in the range of 571~587 nm for 450 nm excitation light source. The highest luminescence intensity was obtained with Eu concentration of 3 mol% and concentration quenching was observed beyond 5 mol%. FE-SEM and PSA showed that the synthesized phosphors consists of particles with an average size of ${\sim}8.2{\mu}m$.

Synthesis and Photoluminescence Properties of Red Phosphors Gd1-xAl3(BO3)4:Eux3+ (적색 형광체 Gd1-xAl3(BO3)4:Eux3+의 합성과 발광 특성)

  • Cho, Shin-Ho;Cho, Seon-Woog
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.145-149
    • /
    • 2012
  • Red phosphors of $Gd_{1-x}Al_3(BO_3)_4:{Eu_x}^{3+}$ were synthesized by using the solid-state reaction method. The phase structure and morphology of the phosphors were measured using X-ray diffraction (XRD) and field emission-scanning electron microscopy (FE-SEM), respectively. The optical properties of $GdAl_3(BO_3)_4:Eu^{3+}$ phosphors with concentrations of $Eu^{3+}$ ions of 0, 0.05, 0.10, 0.15, and 0.20 mol were investigated at room temperature. The crystals were hexagonal with a rhombohedral lattice. The excitation spectra of all the phosphors, irrespective of the $Eu^{3+}$ concentrations, were composed of a broad band centered at 265 nm and a narrow band having peak at 274 nm. As for the emission spectra, the peak wavelength was 613 nm under a 274 nm ultraviolet excitation. The intensity ratio of the red emission transition ($^5D_0{\rightarrow}^7F_2$) to orange ($^5D_0{\rightarrow}^7F_1$) shows that the $Eu^{3+}$ ions occupy sites of no inversion symmetry in the host. In conclusion, the optimum doping concentration of $Eu^{3+}$ ions for preparing $GdAl_3(BO_3)_4:Eu^{3+}$ phosphors was found to be 0.15 mol.

Synthesis and Luminescent Characterization of Eu2+/Dy3+-Doped Sr2MgSi2O7 Powders (Eu2+/Dy3+ 이온이 도핑된 Sr2MgSi2O7 분말 합성 및 발광 특성)

  • Park, Jaehan;Kim, Young Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.658-662
    • /
    • 2014
  • $Eu^{2+}/Dy^{3+}$-doped $Sr_2MgSi_2O_7$ powders were synthesized using a solid-state reaction method with flux ($NH_4Cl$). The broad photoluminescence (PL) excitation spectra of $Sr_2MgSi_2O_7:Eu^{2+}$ were assigned to the $4f^7-4f^65d$ transition of the $Eu^{2+}$ ions, showing strong intensities in the range of 375 to 425 nm. A single emission band was observed at 470 nm, which was the result of two overlapping subbands at 468 and 507 nm owing to Eu(I) and Eu(II) sites. The strongest emission intensity of $Sr_2MgSi_2O_7:Eu^{2+}$ was obtained at the Eu concentration of 3 mol%. This concentration quenching mechanism was attributable to dipole-dipole interaction. The $Ba^{2+}$ substitution for $Sr^{2+}$ caused a blue-shift of the emission band; this behavior was discussed by considering the differences in ionic size and covalence between $Ba^{2+}$ and $Sr^{2+}$. The effects of the Eu/Dy ratios on the phosphorescence of $Sr_2MgSi_2O_7:Eu^{2+}/Dy^{3+}$ were investigated by measuring the decay time; the longest afterglow was obtained for $0.01Eu^{2+}/0.03Dy^{3+}$.

Fabrication of $Gd_2O_3:Eu^{3+}$ Nano Phosphor and Optical Characteristics for High Resolution Radiation Imaging (고해상도 방사선 영상을 위한 $Gd_2O_3:Eu^{3+}$ 나노 형광체 제조 및 광학적 특성)

  • Kim, So-Yeong;Kang, Sang-Sik;Park, Ji-Koon;Cha, Byung-Youl;Choe, Chi-Won;Lee, Hyung-Won;Nam, Sang-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.148-152
    • /
    • 2007
  • In this paper, we have synthesized $Gd_2O_3:Eu^{3+}$ nano phosphor particle using a low temperature solution-combustion method. We have investigated the structure and the luminescent characteristic as the sintering temperature and europium concentration. From XRD(X-ray diffraction) and SEM(scanning electron microscope) results, we have verified that the phosphor particle was fabricated a spherical shape with $30{\sim}40nm$ particle size. From the photoluminescence results, the strong peak exhibits at 611 um and the luminescent intensity depends on europium concentration. $Gd_2O_3:Eu$ fine phosphor particle has shown excellent luminescent efficiency at 5 wt% of europium concentration. The phosphors calcinated at $500^{\circ}C$ have possessed the x-ray peaks corresponding to the cubic phase of $Gd_2O_3$. As calcinations temperature increased to $700^{\circ}C$, the new monoclinic phase has identified except cubic patterns. From the luminescent decay time measurements, mean lifetimes were $2.3{\sim}2.6ms$ relatively higher than conventional bulk phosphors. These results indicate that $Gd_2O_3:Eu$ nano phosphor is possible for the operation at the low x-ray dose, therefore, the application as medical imaging detector.

Control of Particle Size and Luminescence Property in Zn$_2$SiO$_4$:Mn Green Phosphor (Zn$_2$SiO$_4$:Mn 녹색형광체의 입도제어 및 발광특성)

  • Seong, Bu-Yong;Jeong, Ha-Gyun;Park, Hui-Dong
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.636-640
    • /
    • 2001
  • In order to improve the optical Performance of green emitting phosphor for plasma display panel (PDP) application, the wet chemical method for preparing $Zn_{2-x}$ $SiO_4$:xMn (xi=0.02. 0.08) phosphor was designed. The spherical phosphor particles were obtained and the size can be between 0.5$\mu\textrm{m}$ and 2$\mu\textrm{m}$. The formation of phosphor, which had the willemite structure, was completed at relatively low temperature of 108$0^{\circ}C$. Also, photoluminescence Properties of the phosphors prepared were investigated under vacuum ultraviolet excitation. In particular, the emission intensity of Zn$_2$SiO$_4$:0.08Mn phosphor having the 1$\mu\textrm{m}$ of particle size was higher than that of commercial phosphor by 40%. The decay time of zinc silicate powder prepared as containing 8 mole% of manganese has been measured as 7.8ms.

  • PDF

Polarized Light Emission of Liquid Crystalline Polymer Blends (액정성 고분자 블렌드의 편발광)

  • 김영철;조현남;김동영;홍재민;송남웅
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.211-219
    • /
    • 2000
  • Fluorene-based light emitting polymer blends with liquid crystalline characteristics were studied on effective energy transfer and dichroic characteristics. Incorporating 0.5 wt% of the non-liquid crystalline into the liquid crystalline polymer suppressed the PL emission at 420 nm on photoexcitation at 360 nm, but generated a new PL emission of the non-liquid crystalline polymer at 480 nm. The highest PL intensity at 480 nm, which was 13 times stronger than those of the two polymers before blending, was observed for a blend with 2.0 wt% of the non-liquid crystalline polymer. When the molecules of the blends were aligned on a rubbed polyimide surface by a heating-cooling process, the dichroic ratio and the order parameter were 2.0 and 0.25, respectively. Time-correlated single photon counting (TCSPC) study revealed that the time required for energy transfer between the two chromophores was shortened by 93 ps when the blends were aligned on the rubbed polyimide surface by the heating-cooling process. The thermal treatment also enhanced the energy transfer efficiency by 9%.

  • PDF

Carrier Dynamics of P-modulation Doped In(Ga)A/InGaAsP Quantum Dots (P 변조도핑한 In(Ga)As/InGaAsP 양자점에 대한 운반자 동역학)

  • Jang, Y.D.;Park, J.;Lee, D.;Hong, S.U.;Oh, D.K.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.3
    • /
    • pp.301-307
    • /
    • 2006
  • We have investigated optical properties of p-modulation doped In(Ga)As quantum dots (QDs) on InP substrate with a comparison with the undoped QDs. Photoluminscence (PL) intensity of doped QDs at 10 K was about 10 times weaker than that of undoped QD sample. The decay time of doped QD sample at its PL peak, obtained from the time-resolved PL (TR-PL) experiment at 10 K, was very fast compared to that of undoped sample. We interpret that this fast decay time of the doped QD sample comes from the addition of non-radiative recombination paths, which are originated from the doping-related defects.

Synthesis and Luminescent Properties of Sm3+-doped GdVO4 Phosphors (Sm3+ 도핑된 GdVO4 형광체의 제조와 발광 특성)

  • Cho, Shin-Ho;Cho, Seon-Woog
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.2
    • /
    • pp.93-98
    • /
    • 2012
  • $Gd_{1-x}VO_4:{Eu_x}^{3+}$ phosphor powders were synthesized with changing the concentration of $Sm^{3+}$ ion by using a solid-state reaction method. The crystal structures of all the phosphors were found to be a tetragonal system, composed of (200) diffraction peak centered at $24.76^{\circ}$, and the morphology of grains approached the spherical form with homeogenous size distribution when the concentration of $Sm^{3+}$ ion was 0.05 mol. As for the photoluminescence properties, all of the phosphor powders, irrespective of $Sm^{3+}$ ion concentration, indicated the yellow, orange, and red emission peaked at 565, 603, and 645 nm respectively. As the concentration of $Sm^{3+}$ ion increases, the intensity of excitation spectrum showed a decreasing tendency on the increase of Sm3+ ion concentration. The maximum excitation and emission spectra were observed and the symmetry ratio was 1.19 at 0.05 mol of $Sm^{3+}$ ion.

Control of Particle Size and Luminescence Property in Zn$_2$SiO$_4$:Mn Green Phosphor (Zn$_2$SiO$_4$:Mn 녹색형광체의 입도제어 및 발광특성)

  • 성부용;정하균;박희동
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.363-363
    • /
    • 2001
  • In order to improve the optical Performance of green emitting phosphor for plasma display panel (PDP) application, the wet chemical method for preparing $Zn_{2-x}$ $SiO_4$:xMn (xi=0.02. 0.08) phosphor was designed. The spherical phosphor particles were obtained and the size can be between 0.5$\mu\textrm{m}$ and 2$\mu\textrm{m}$. The formation of phosphor, which had the willemite structure, was completed at relatively low temperature of 108$0^{\circ}C$. Also, photoluminescence Properties of the phosphors prepared were investigated under vacuum ultraviolet excitation. In particular, the emission intensity of Zn$_2$SiO$_4$:0.08Mn phosphor having the 1$\mu\textrm{m}$ of particle size was higher than that of commercial phosphor by 40%. The decay time of zinc silicate powder prepared as containing 8 mole% of manganese has been measured as 7.8ms.

Luminescence Characteristics and Crystal Structure of CaWO4-Li2WO4-Eu2O3 Phosphors (CaWO4-Li2WO4-Eu2O3계 형광체의 PL 특성과 결정구조)

  • Kim, Jeong-Seog;Choi, Jin-Ho;Jeong, Bong-Man;Kang, Hyun-Ju
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.10-15
    • /
    • 2006
  • Photoluminescence (PL) and crystal structures of the $(l-x)CaWO_4-xLi_2WO_4$ binary system added with $Eu_2O_3$ activator have been characterized. The $CaWO_4\;and\;Li_2WO_4$ have the scheelite and phenakite structures respectively. The $CaWO_4-Li_2WO_4-Eu_2O_3$ phosphors show the red luminescence of 613 nm peak wavelength. The wavelength range of excitation spectral band is $380\~470$ nm with the peak wavelength of 397 nm. The $0.88(0.5CaWO_4-0.5Li_2WO_4)-0.12Eu_2O_3$ showed the most superior luminescence characteristics. The effect of co-doping elements such as $Al_2O_3$ and rare-earth oxides on PL has been characterized. The co-doping elements deteriorated the luminescence intensity except the $Al_2O_3$ and $Gd_2O_3$. The PL characteristics of $CaWO_4-Li_2WO_4-Eu_2O_3$ phosphors have been compared to those of the alkali europium double molybdates (tungstates) of scheelite-related structure such as $LiEu(MoO_4)_2$ and $CsEu(MoO_4)_2$. The crystal structures of $(l-y)[(l-x)CaWO_4-xLi_2WO_4]-yEu_2O_3$ phosphors have been characterized using XRD data and rietveld refinement.