• Title/Summary/Keyword: Photoluminescence intensity

Search Result 478, Processing Time 0.031 seconds

Growth and Characterization of $ZnGa_2Se_4$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)에 의한 $ZnGa_2Se_4$단결정 박막 성장과 특성에 관한 연구)

  • 장차익;홍광준;정준우;백형원;정경아;방진주;박창선
    • Korean Journal of Crystallography
    • /
    • v.12 no.3
    • /
    • pp.127-136
    • /
    • 2001
  • A stoichiometric mixture of evaporating materials for ZnGa₂Se₄single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, ZnGa₂Se₄mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were 610℃ and 450℃, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of ZnGa₂Se₄single crystal thin films measured from Hall effect by von der Pauw method are 9.63×10/sup 17/㎤ and 296 ㎠/V·s at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the ZnGa₂Se₄single crystal thin film, we have found that the values of spin orbit splitting △so and the crystal field splitting Δcr were 251.9meV and 183.2 meV at 10 K, respectively. From the photoluminescence measurement on th ZnGa₂Se₄single crystal thin film, we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton (A°, X) having very strong peak intensity. Then, the full-width-at-half-maximum (FWHM) and binding energy of neutral acceptor bound excition were 11 meV and 24.4 meV, respectivity. By Haynes rule, an activation energy of impurity was 122 meV.

  • PDF

Growth and Characterization of $CdGa_2Se_4$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)에 의한 $CdGa_2Se_4$ 단결정 박막 성장과 특성)

  • Choi, S.P.;Hong, K.J.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.328-337
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the $CdGa_2Se_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdGa_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3}$, $345\;cm^2/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuInSe_2$ single crystal thin film, we have found that the values of spin orbit splitting ${\Delta}So$ and the crystal field splitting ${\Delta}Cr$ were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on $CdGa_2Se_4$ single crystal thin film, we observed free excition ($E_x$) existing only high quality crystal and neutral bound exiciton ($D^{\circ}$, X) having very strong peak intensity. Then, the full-width-at -half-maximum(FWHM) and binding energy of neutral donor bound excition were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV.

  • PDF

Syntheses and Properties of ZnS:Mn/ZnS Core-Shell Quantum Dots Prepared via Thermal Decomposition Reactions of Organometallic Precursors at Various Reaction Temperatures (다양한 온도 조건에서의 ZnS:Mn/ZnS 코어-쉘 양자점의 합성 및 광 특성에 관한 연구)

  • Lee, Jae-Woog;Hwang, Cheong-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.677-682
    • /
    • 2009
  • ZnS:Mn/ZnS core-shell quantum dots (QDs), were synthesized via a thermal decomposition reaction of organometallic precursors in a hot solvent mixture. The synthetic conditions of the quantum dots were monitored at various reaction temperatures for the core formation, while the shell formation temperature was fixed at 135$^{\circ}C$. The obtained colloidal nanocrystals at corresponding temperatures were characterized by UV-Vis, solution photoluminescence (PL) spectroscopies, and further obtained powders were characterized by XRD, HR-TEM, and EDXS analyses. The synthetic temperature condition to obtain the best PL emission intensity for the core-shell QD was 135$^{\circ}C$, for both core and shell formation. At this temperature, solution PL spectrum showed a narrow emission peak at 583 nm with a relative PL quantum efficiency of 42.15%. In addition, the measured spherical particle sizes for the ZnS:Mn/ZnS nanocrystals via HR-TEM were in the range of 4.0 to 5.4 nm, while ellipsoidal particles were obtained at 150$^{\circ}C$.

Investigation of the influence of substrate surface on the ZnO nanostructures growth (기판 표면의 영향에 의한 ZnO 나노 구조 성장에 관한 연구)

  • Ha, Seon-Yeo;Jung, Mi-Na;Park, Seung-Hwan;Yang, Min;Kim, Hong-Seung;Lee, Uk-Hyeon;Yao, Takafumi;Jang, Ji-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.1022-1025
    • /
    • 2005
  • The effect of substrate surface to the formation of ZnO nanostructures has been investigated using Si (111), $Al_2O_3$(C-plane) $Al_2O_3$(A-plane), and $Al_2O_3$(R-plane) substrates. The growth temperature was controlled from 500$^{\circ}C$ ${\sim}$ 600$^{\circ}C$, and the luminescence properties were investigated by a series of photoluminescence (PL) measurements at the elevating temperatures. ZnO nanostructures grown on Si substrate show strong UV emission intensity along with green emission positioned at 3.22 eV and 2.5 eV, respectively. However, green emission was not observed from the ZnO nanostructures grown on $Al_2O_3$ substrates. It is explained in terms of the difference of the surface energy between Si and $Al_2O_3$. Also, the origin of UV emissions has been discussed by using the temperature-dependent PL. The distinction of the PL spectra is interpreted in terms of the difference of the impurity included in the nanostructures.

  • PDF

Photovoltaic Properties of MEH-PPV/DFPP Blend Devices Based on Novel n-type Polymer DFPP (새로운 n형 고분자인 DFPP 기반의 MEH-PPV/DFPP Blend 소자의 광전특성)

  • Kim, Su-Hyun;Moon, Ji-Sun;Lee, Jae-Woo;Lee, Seok;Kim, Sun-Ho;Byun, Young-Tae;Kim, Dong-Young;Lee, Chang-Jin;Kim, Eu-Gene;Chung, Young-Chul;Rie, Kung-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.461-468
    • /
    • 2006
  • Optical characteristics in polymer films of MEH-PPV/DFPP blends were for the first time investigated. DFPP (N, N'-diperfluorophenyl-3,4,9,10-perylenetetracarboxylic diimide) used here was a novel n-type polymer, which had good stability in air and solubility in common solvents. For a 1:9 DFPP:MEH-PPV blend, highly efficient quenching of photoluminescence (PL) was observed. In addition, the photocurrent responses of these MEH-PPV/DFPP photovoltaic cells were measured. When the light intensity was $50mW/cm^2$, short-circuit photocurrent densities were two times higher than those of single layer MEH-PPV devices.

EDTA Surface Capped Water-Dispersible ZnSe and ZnS:Mn Nanocrystals

  • Lee, Jae-Woog;Lee, Sang-Min;Huh, Young-Duk;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1997-2002
    • /
    • 2010
  • ZnSe and ZnS:Mn nanocrystals were synthesized via the thermal decomposition of their corresponding organometallic precursors in a hot coordinating solvent (TOP/TOPO) mixture. The organic surface capping agents were substituted with EDTA molecules to impart hydrophilic surface properties to the resulting nanocrystals. The optical properties of the water-dispersible nanocrystals were analyzed by UV-visible and room temperature solution photoluminescence (PL) spectroscopy. The powders were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), and confocal laser scanning microscopy (CLSM). The solution PL spectra revealed emission peaks at 390 (ZnSe-EDTA) and 597 (ZnS:Mn-EDTA) nm with PL efficiencies of 4.0 (former) and 2.4% (latter), respectively. Two-photon spectra were obtained by fixing the excitation light source wavelengths at 616 nm (ZnSe-EDTA) and 560 nm (ZnS:Mn-EDTA). The emission peaks appeared at the same positions to that of the PL spectra but with lower peak intensity. In addition, the morphology and sizes of the nanocrystals were estimated from the corresponding HR-TEM images. The measured average particle sizes were 5.4 nm (ZnSe-EDTA) with a standard deviation of 1.2 nm, and 4.7 nm (ZnS:Mn-EDTA) with a standard deviation of 0.8 nm, respectively.

The properties and effects of the electrodeposited CdTe compound film on the porous silicon (다공질규소에 전착된 CdTe 화합물 박막의 특성과 효과)

  • 김영유;이춘우;류지욱;홍사용;박대규;육근철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.89-93
    • /
    • 1999
  • The properties and effects of the electrodeposited CdTe compound film on the porous silicon. To find ways to achieve good mechanical contact on the nanostructure porous silicon layer while keeping the interface transparent, we tried to electrodeposit a CdTe compound film on the porous silicon surface. The CdTe compound film was fabricated with -2.3V vs. Ag/AgCl potential difference in the electrolyte solution containing 1M of $CdSO_4$and 1 mM of $TeO_4$. X-ray diffraction results confirmed the existence of CdTe compound film on the porous silicon surface. Auger depth profile showed that Cd and Te were uniformly distributed up to a 80 nm distance from the surface. The photoluminescence of the sample with a CdTe compound film was weaker in intensity than that without the film and the maximum wavelength was shifted to the higher energy. These results indicate that the contacting CdTe compound film was infiltrated to the nanostructure of porous silicon.

  • PDF

Properties of MgMoO4:Eu3+ Phosphor Thin Films Grown by Radio-frequency Magnetron Sputtering Subjected to Thermal Annealing Temperature (열처리 온도 변화에 따른 라디오파 마그네트론 스퍼터링으로 성장된 MgMoO4:Eu3+ 형광체 박막의 특성)

  • Cho, Shinho
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.25-29
    • /
    • 2016
  • $Eu^{3+}$-activated $MgMoO_4$ phosphor thin films were grown at $400^{\circ}C$ on quartz substrates by radio-frequency magnetron sputter deposition from a 15 mol% Eu-doped $MgMoO_4$ target. After the deposition, the phosphor thin films were annealed at several temperatures for 30 min in air. The influence of thermal annealing temperature on the structural and optical properties of $MgMoO_4:Eu^{3+}$ phosphor thin films was investigated by using X-ray diffraction (XRD), photoluminescence (PL), and ultraviolet-visible spectrophotometry. The transmittance, optical band gap, and intensities of the luminescence and excitation spectra of the thin films were found to depend on the thermal annealing temperature. The XRD patterns indicated that all the thin films had a monoclinic structure with a main (220) diffraction peak. The highest average transmittance of 91.3% in the wavelength range of 320~1100 nm was obtained for the phosphor thin film annealed at $800^{\circ}C$. At this annealing temperature the optical band gap energy was estimated as 4.83 eV. The emission and excitation spectra exhibited that the $MgMoO_4:Eu^{3+}$ phosphor thin films could be effectively excited by near ultraviolet (281 nm) light, and emitted the dominant 614 nm red light. The results show that increasing RTA temperature can enhance $Eu^{3+}$ emission and excitation intensity.

Electrical properties of n-ZnO/p-Si heterojunction photovoltaic devices

  • Kang, Ji Hoon;Lee, Kyoung Su;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.306.1-306.1
    • /
    • 2016
  • ZnO semiconductor material has been widely utilized in various applications in semiconductor device technology owing to its unique electrical and optical features. It is a promising as solar cell material, because of its low cost, n-type conductivity and wide direct band gap. In this work ZnO/Si heterojunctions were fabricated by using pulsed laser deposition. Vacuum chamber was evacuated to a base pressure of approximately $2{\times}10^{-6}Torr$. ZnO thin films were grown on p-Si (100) substrate at oxygen partial pressure from 5mTorr to 40mTorr. Growth temperature of ZnO thin films was set to 773K. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnO target, whose density of laser energy was $10J/cm^2$. Thickness of all the thin films of ZnO was about 300nm. The optical property was characterized by photoluminescence and crystallinity of ZnO was analyzed by X-ray diffraction. For fabrication ZnO/Si heterojunction diodes, indium metal and Al grid patterns were deposited on back and front side of the solar cells by using thermal evaporator, respectively. Finally, current-voltage characteristics of the ZnO/Si structure were studied by using Keithly 2600. Under Air Mass 1.5 Global solar simulator with an irradiation intensity of $100mW/cm^2$, the electrical properties of ZnO/Si heterojunction photovoltaic devices were analyzed.

  • PDF

RTA Effect on Transport Characteristics in Al0.25Ga0.75As/In0.2Ga0.8As pHEMT Epitaxial Structures Grown by Molecular Beam Epitaxy (MBE로 성장된 Al0.25Ga0.75As/In0.2Ga0.8As pHEMT 에피구조의 RTA에 따른 전도 특성)

  • Kim, Kyung-Hyun;Hong, Sung-Ui;Paek, Moon-Cheol;Cho, Kyung-Ik;Choi, Sang-Sik;Yang, Jeon-Wook;Shim, Kyu-Hwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.605-610
    • /
    • 2006
  • We have investigated $Al_{0.25}Ga_{0.75}As/In_{0.2}Ga_{0.8}As$ structures for pseudomorphic high electron mobility transistor(pHEMT), which were grown by molecular beam epitaxy(MBE) and consequently annealed by rapid thermal anneal(RTA), using Hall measurement, photoluminescence, and transmission electron microscopy (TEM). According to intensity and full-width at half maximum maintained stable at the same energy level, the quantized energy level in $Al_{0.25}Ga_{0.75}As/In_{0.2}Ga_{0.8}As$ quantum wells was independent of the RTA conditions. However, the Hall mobility was decreased from $6,326cm^2/V.s\;to\;2,790cm^2/V.s\;and\;2,078cm^2/V.s$ after heat treatment respectively at $500^{\circ}C\;and\;600^{\circ}C$. The heat treatment which is indispensable during the fabrication procedure would cause catastrophic degradation in electrical transport properties. TEM observation revealed atomically non-uniform interfaces, but no dislocations were generated or propagated. From theoretical consideration about the mobility changes owing to inter-diffusion, the degraded mobility could be directly correlated to the interface scattering as long as samples were annealed below $600^{\circ}C$ lot 1 min.