• Title/Summary/Keyword: Photoluminescence intensity

Search Result 478, Processing Time 0.032 seconds

Photoluminescence Properties of $Zn_{2-x-y}SiO_4:Mn_x,\;M_y$ Phosphors ($Zn_{2-x-y}SiO_4:Mn_x,\;M_y$계 형광체의 발광특성)

  • Cho, Bong Hyun;Sohn, Kee Sun;Park, Hee Dong;Chang, Hyun Ju;Hwang, Taek Sung
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.206-212
    • /
    • 1999
  • The main objective of the present investigation is to improve the photoluminescent performance of existing $Zn_2SiO_4:Mn$ phosphors by introducing a new co-dopant. The co-doping effect of Mg and/or Cr upon emission intensity and decay time was studied in the present investigation. The co-dopants incorporated into the $Zn_2SiO_4:Mn$ phosphors are believed to alter the internal energy state so that the change in emission intensity and decay time can be expected. Both Mg and Cr ions have a favourable influence on photoluminescence prpperties, for example, the Mg ion enhances the intensity of manganese green emission and the Cr ion shortens the decay time. The enhancement in emission intensity of $Zn_2SiO_4:Mn,\;Mg$ phosphors was interpreted by taking into account the result from the DV-X${\alpha}$ embedded cluster calculation. On the other hand, the energy transfer between Mn and Cr ions was found to be responsible for the shortening of decay time in$Zn_2SiO_4:Mn,\;Cr$ phosphors.

  • PDF

Anomalous Effect of Hydrogenation on the Optical Characterization $In_{0.5}Ga_{0.5}As$ Quantum Dot Infrared Photodetectors (MBE로 성장된 $In_{0.5}Ga_{0.5}As/GaAs$ 양자점 원적외선 수광소자의 수소화 처리가 광학적 특성에 미치는 특이영향)

  • Lim J.Y.;Song J.D.;Choi W.J.;Cho W.J.;Lee J.I.;Yang H.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.223-230
    • /
    • 2006
  • We have investigated the characteristics of hydrogen (H) plasma treated quantum dot infrared photodetectors (QDIPs). The structure used in this study consists of 3 stacked, self assembled $In_{0.5}Ga_{0.5}As/GaAs$ QD layer separated by GaAs barrier layers that were grown by molecular beam epitaxy. Optical characteristics of QDIPs, such as photoluminescence (PL) spectra and photocurrent spectra, have been studied and compared with each other for the as grown and H plasma treated QDIPs. H plasma treatment, resulted in the splitting of PL peak, which can be attributed to the redistribution of the size of QDs. The activation energies estimated from the temperature dependence of integrated PL intensity for as grown and H plasma treated QDIPs are found to be in good agreement with those determined from corresponding peaks of photocurrent spectra. It is also noted that photocurrent is detected up to 130 K for the H plasma treated QDIP, suggesting the future possibility for the development of infrared photodetectors with high temperature operation.

Structural and optical properties of ZnO epilayers grown on oxygen- and hydrogen-plasma treated sapphire substrates (산소와 수소 플라즈마로 처리한 사파이어 기판 위에 성장된 ZnO 박막의 구조적.광학적 특성)

  • Lee, S.K.;Kim, J.Y.;Kwack, H.S.;Kwon, B.J.;Ko, H.J.;Yao, Takafumi;Cho, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.463-467
    • /
    • 2007
  • Structure and optical properties of ZnO epilayers grown on oxygen- and hydrogen-plasma treated sapphire substrates by plasma-assisted molecular beam epitaxy (denoted as samples A and B, respectively) have been investigated by various techniques. The crystal quality and structural properties of the surface for the ZnO epilayers were investigated by high-resolution X-ray diffraction and atomic force microscope. For investigating the optical properties of excitonic transition of ZnO, we carried out photoluminescence experiments as a function of temperature. The free exciton, bound exciton emission and their phonon replicas were investigated as a function of temperature from 10 to 300 K, and the intensity of excitonic PL peak emission from the sample A is found to be higher than that of sample B. From the results, we found that sample A has better crystal structure quality and optical properties as compared to sample B. The number of oxygen vacancies may be decreased in sample A, resulting in an enhancement of the crystal quality and a higher intensity of excitonic emission band as compared to sample B.

Site-selective Photoluminescence Spectroscopy of Er-implanted Wurtzite GaN under Various Annealing Condition

  • Kim, Sangsig;Sung, Man Young;Hong, Jinki;Lee, Moon-Sook
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.1
    • /
    • pp.26-31
    • /
    • 2000
  • The ~1540 nm $^4$ $I_{13}$ 2/ longrightarro $w^4$ $I_{15}$ 2/ emissions of E $r^{3+}$ in Er-implanted GaN annealed at temperatures in the 400 to 100$0^{\circ}C$ range were investigated to gain a better understanding of the formation and dissociation processes of the various E $r^{3+}$ sites and the recovery of damage caused by the implantation with increasing annealing temperature ( $T_{A}$).The monotonic increase in the intensity of the broad defect photoluminescence(PL) bands with incresing $T_{A}$ proves that these are stable radiative recombination centers introduced by the implantation and annealing process. Theser centers cannot be attributed to implantation-induced damage that is removed by post-implantation annealing. Selective wavelength pumpling of PL spectra at 6K reveals the existence of at least nine different E $r^{3+}$ sites in this Er-implanted semiconductor. Most pf these E $r^{3+}$ PL centers are attributed to complexed of Er atoms with defects and impurities which are thermally activated at different $T_{A}$. Only one of the nine observed E $r^{3+}$ PL centers can be pumped by direct 4f absorption and this indicates that it is highest concentration E $r^{3+}$ center and it represents most of the optically active E $r^{3+}$ in the implanted sample. The fact that this E $r^{3+}$ center cannot be strongly pumped by above-gap light or broad band below-gap absorption indicates that it is an isolated center, i.e not complexed with defects or impurities, The 4f-pumped P: spectrum appears at annealing temperatures as low as 40$0^{\circ}C$, and although its intensity increase monotonically with increasing $T_{A}$ the wavelengths and linewidths of its characteristic peaks asre unaltered. The observation of this high quality E $r_{3+}$PL spectrum at low annealing temperatures illustrates that the crystalline structure of GaN is not rendered amorphous by the ion implantation. The increase of the PL intensities of the various E $R_{3+}$sites with increasing $T_{A}$is due to the removal of competing nonradiative channels with annealing. with annealing.annealing.

  • PDF

Synthesis of ZnS : Cu nano-crystals and structural and optical properties (ZnS : Cu nano 업자의 합성 및 구조적.광학적 특성)

  • 이종원;이상욱;조성룡;김선태;박인용;최용대
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.138-143
    • /
    • 2002
  • In this study, ZnS: Cu nano-crystals are synthesized by solution synthesis technique (SST). The structural properties such as crystal structure and particle morphology, and the optical properties such as light absorption/transmittance, energy bandgap, and photoluminescence (PL) excitation/emission are investigated. In an attempt to realize the Cu-doping easiness, the synthesis temperature (~$80^{\circ}C$) is applied to the synthesis bath, and the thiourea is used as sulfur precursor, unlike other general chemical synthesis route. Both undoped ZnS and ZnS : Cu nano-crystals have the cubic crystal structure and have the spherical particle shape. The position of light absorption edge is ~305 nm, indicating the occurrence of quantum size effect. The PL emission intensity and line-width are maximum and minimum, respectively, for Cu-doping concentration 0.03M. In particular, the dependence of PL intensity and line-width on the Cu-doping concentration for ZnS : Cu nano-crystals synthesized by SST is reported for the first time in this study. Experimental results of the absorption edge and the PL excitation show that the main emission peak of ZnS : Cu nano-crystals (~510 nm) in this study is due to the radiative recombination center in the energy bandgap induced by Cu dopant.

The Photoluminescence Characteristic of Ba2-xSrxSiO4:Eu2+ Phosphor Particles Prepared by Spray Pyrolysis (분무열분해 공정에 의해 제조된 Ba2-xSrxSiO4:Eu2+ 형광체의 발광특성)

  • Kang, Hee Sang;Park, Seung Bin;Koo, Hye Young;Kang, Yun Chan
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.609-613
    • /
    • 2006
  • Ba2-xSrxSiO4:Eu2+ phosphor particles with the high photoluminescence (PL) intensity under long wavelength ultraviolet (UV) were prepared by spray pyrolysis. The photoluminescence, morphological and crystalline characteristics of $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles prepared by spray pyrolysis were investigated. $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles prepared by spray pyrolysis had various colors from bluish green to yellow by changing the ratio of barium and strontium of the host material. In case of x=0, the main emission peak of $Ba_2SiO_4:Eu^{2+}$ phosphor was 500 nm. In case of x=2, the main emission peak of $Sr_2SiO_4:Eu^{2+}$ phosphor was 554nm. $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles obtained by spray pyrolysis had spherical shape and hollow structure. On the other hand, the post-treated $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles had large size and irregular shape. The $Ba_{1.488}Sr_{0.5}SiO_4:Eu_{0.012}{^{2+}}$ phosphor particles had the maximum PL intensity after post-treatment at temperature of $1300^{\circ}C$ for 3h under reduction atmosphere.

A Study on the Effect of O$_2$ annealing on Structural, Optical, and Electrical Characteristics of Undoped ZnO Thin Films Deposited by Magnetron Sputtering (산소 어닐링이 마그네 트론 스퍼터링으로 증착된 undoped ZnO박막의 구조적, 광학적, 전기적 특성에 미치는 영향에 대한 연구)

  • Yun, Eui-Jung;Park, Hyeong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.7
    • /
    • pp.7-14
    • /
    • 2009
  • In this paper, the effects of annealing conditions on the structural ((002) intensity, FWHM, d-spacing, grain size, (002) peak position), optical (UV peak, UV peak position) and electrical properties (carrier concentrations, resistivity, mobility) of ZnO films were investigated. ZnO films were deposited onto SiO$_2$/si substrates by RF magnetron sputtering from a ZnO target. The substrate was not heated during deposition. ZnO films were annealed in temperature ranges of $500\sim650^{\circ}C$ in the O$_2$ flow for 5$\sim$20 min. The film average thicknesses were in the range of 291 nm. The surface morphologies and structures of the samples were characterize by SEM and XRD, respectively. The optical properties were evaluated by photoluminescence (PL) measurement at room temperature (RT) using a He-Cd 325 nm laser. As the annealing temperature and time vary, the following relations were also observed: (1) proportional relationships among UV intensity (002) intensity, and grain size exist, (2) UV intensity is inversely proportional to FWHM, (3) there is no special relationship between UV intensity and electron carrier concentrations, (4) d-spacing is inversely proportional to (002) peak position, (5) UV peak position in the range of 3.20$\sim$3.24 eV means that ZnO films have a n-type conductivity which was consistent with that obtained from the electrical property, (6) the optimal conditions for the best optical and structural characteristics were found to be oxygen fraction, (O$_2$/(O$_2$+Ar)) of 0.2, RF power of 240W, substrate temperature of RT, annealing condition of 600$^{\circ}C$ for 20 min, and sputtering pressure of 20 mTorr.

Synthesis and Luminescence Properties of $YGdO_3:Eu^{3+}$ Phosphor by Solvent Evaporation Method (용매 증발법에 의한 $YGdO_3:Eu^{3+}$ 형광체의 제조와 발광 특성)

  • Lee, Dong-Kyu;Jeon, Sang-Bae;Lee, Jin-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.238-245
    • /
    • 2007
  • $Eu^{3+}$ doped $YGdO_3$ phosphors particles which have fine size and narrow size distribution with non aggregated uniform morphology were prepared by solvent evaporation method for the improvement of emission efficiency. Several parameters have been investigated in this study such as the influences of composition ratio of host materials, calcination temperature, amount of activator, surfactant, pH and flux on the photoluminescence intensity, particle size and dispersion. $Eu^{3+}$ doped $YGdO_3$ phosphor presented a strong narrow band emission peak at 612nm. The maximum emission intensity of$YGdO_3:Eu^{3+}$ occurred when $Eu^{3+}$ concentration is 3wt% under vacuum ultra violet excitation. Prepared phosphors were found to have small round-shaped particles about 150nm in size. The addition of PVA as a surfactant inhibits the grain growth and the agglomeration of particles efficiently by reducing the oxygen bridge bonds. As the pH reduces, PL intensity increase due to reducing the formation of oxygen bridge bonds. The particles prepared from solvent evaporation method with 5wt% LiCl were found to have 120% PL intensity compare to particles prepared without LiCl flux.

Effects of Precursor Concentration on Surface and Optical Properties of ZnO Nano-Fibrous Thin Films Fabricated by Spin-Coating Method (스핀코팅 방법으로 제작된 ZnO 나노 섬유질 박막의 전구체 농도에 따른 표면 및 광학적 특성)

  • Kim, Min-Su;Kim, Ghun-Sik;Yim, Kwang-Gug;Cho, Min-Young;Jeon, Su-Min;Choi, Hyun-Young;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Lee, Joo-In;Leem, Jae-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.483-488
    • /
    • 2010
  • ZnO nano-fibrous thin films with various precursor concentrations ranging from 0.2 to 1.0 mol (M) were grown by spin-coating method and effects of the precursor concentration on surface and optical properties of the ZnO nano-ribrous thin films were investigated by using scanning electron microscopy (SEM) and photoluminescence (PL). ZnO nuclei were formed at the precursor concentration below 0.4 M and the ZnO nano-fibrous thin films were grown at the precursor concentration above 0.6 M. Further increase in the precursor concentration, the thickness of the ZnO nano-fibrous thin films is gradually increased. The intensity and the full-width at half-maximum (FWHM) of the near-band-edge emission (NBE) is increased as the precursor concentration is increased. The deep-level emission (DLE) is red-shifted as the precursor concentration is increased.

Development of novel oxyfluoride glasses and glass ceramics for photoluminescence material by a containerless processing (무용기 용융법을 활용한 형광소재용 결정화 유리 개발)

  • Hyerin Jo;Minsung Hwang;Youngjin Lee;Jaeyeop Chung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.181-186
    • /
    • 2023
  • In this study, novel Eu2O3-BaF2-La2O3-B2O3 oxyfluoride glasses and glass ceramics were developed by a containerless processing. Differential thermal analysis (DTA) analysis was performed to analyze the thermophysical properties of oxyfluoride glasses doped with Eu2O3, and photoluminescence (PL) characteristics were analyzed to evaluate the luminous efficiency depending on the degree of crystallinity. The glass transition temperature decreased with increasing BaF2 concentration since BaF2 acts as a network modifier in this glass system. In addition, thermal stability which can be estimated by the difference between the glass transition temperature and the onset temperature of the crystallization decreased with increasing BaF2 contents. The peak related to the BaF2 crystal was confirmed after the crystallization by X-ray Diffraction (XRD) analysis. Photoluminescence intensity increased after the crystallization which indicates that the Eu3+ ions are sited in BaF2 crystal. La 3d5/2 x-ray photoelectron spectroscopy (XPS) and F1s XPS spectra were analyzed to precisely understand the behavior of the fluorine ion in the glass structure. Fluorine tends to bond with the network modifying cations such as La3+ and Ba2+ ions and after the crystallization the La-F bonds decreased because F- ions used to form BaF2 crystals.