• Title/Summary/Keyword: Photoexcitation charge transfer

Search Result 5, Processing Time 0.026 seconds

Temperature and Coverage Dependent Quasi-reversible Two-photon Photoemission of 1-phenyl-1-propyne on Cu(111)

  • Sohn, Young-Ku;Wei, Wei;Huang, Weixin;White, John M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1980-1984
    • /
    • 2011
  • A temperature- and coverage-dependant quasi-reversible change in two-photon photoemission (2PPE) of chemisorbed 1-phenyl-1-propyne (PP) on Cu(111) is reported. For PP on Cu(111) at 300 K probed at a photon energy of 4.13 eV, two broad peaks of comparable intensity show final state energies of 7.25 and 7.75 eV above the Fermi level. The former peak could be assigned to the first image potential state (IS, n = 1) and/or unoccupied molecular orbital (UMO), located at 3.1 eV above the Fermi level. The latter is plausibly attributed to a mix of unoccupied higher-order IS (and/or UMO) and occupied surface state (SS) of Cu(111). With decreasing the temperature, the former 2PPE peak shows a shift in position by about 0.2 eV, and the latter exhibits a dramatic increase in intensity. In the system, intermolecular interactions (and/or order-disorder transition) of PP and substrate lattice temperature may play a significant role in change in photoexcitation lifetime (or excitation cross-section), and the unoccupied molecular orbital (UMO)-metal (IS) charge transfer coupling. Our unique 2PPE results provide a deeper insight for understanding photoexcitation charge transfer with temperature in an organic molecule/metal system.

A FULL CHARGE SEPARATION OVER THE TWO SAME CHROMOPHORES IN A PHOTOSYNTHETIC TETRAD

  • Osuka, Atsuhiro;Marumo, Shinji;Okada, Tadashi;Taniguchi, Seiji;Mataga, Noboru;Ohno, Takeshi;Nozaki, Koichi;Yamazaki, Iwao;Nishimura, Yoshinobu
    • Journal of Photoscience
    • /
    • v.4 no.3
    • /
    • pp.113-119
    • /
    • 1997
  • The synthesis and excited-state dynamics are described for a tetrad (ZC - ZP - ZP - I) consisting of zinc chlorin (ZC), zinc porphyrin (ZP), zinc porphyrin (ZP), and pyromellitimide (I), which upon photoexcitation provides a fully charge-separated state (ZC$^+$- P - ZP - l$^- $) with lifetimes of 230 $\mu$s in THF and > 50$ \mu$s in DMF at room temperature via a stepwise electron-transfer relay that has been detected by the ps-time resolved transient absorption spectroscopy.

  • PDF

Synthesis, Characterizations, and Intramolecular Quenching Behavior of an Axially-Linked Trinuclear Molecular Wire Containing Ruthenium(II) Porphycenes

  • Abe, Masaaki;Ashigara, Shiho;Okawara, Toru;Hisaeda, Yoshio
    • Rapid Communication in Photoscience
    • /
    • v.4 no.1
    • /
    • pp.22-24
    • /
    • 2015
  • A new trinuclear complex $[Ru(TPrPc)(CO)]_2[Ru(pytpy)_2](PF_6)_2$ (TPrPc = 2,7,12,17-tetra-n-propylporphycenato dianion and pytpy = 4'-(4-pyridyl)-2,2':6',2"-terpyridine) has been synthesized and characterized as the first example of a discrete molecular wire containing metalloporohycenes as a building block. The trinuclear complex shows multiple-step redox behavior in 0.1 M n-$Bu_4NPF_6$-dichloromethane. The mononuclear $[Ru(pytpy)_2]^{2+}$ precursor shows emission at 640 nm (deaerated acetone, 298 K) upon illumination at the metal-to-ligand charge transfer (MLCT) band at 495 nm, but the trinuclear molecular wire is found to be non-emissive upon photoexcitation at the central $[Ru(pytpy)_2]^{2+}$ entity, indicating an efficient quenching ability of the axially-linked, ruthenium(II)-porphycene chromophores in an intramolecular fashion.

Color-Tuning Mechanism of the Lit Form of Orange Carotenoid Protein

  • Man-Hyuk Han;Hee Wook Yang;Jungmin Yoon;Yvette Villafani;Ji-Young Song;Cheol Ho Pan;Keunwan Park;Youngmoon Cho;Ji-Joon Song;Seung Joong Kim;Youn-Il Park;Jiyong Park
    • Molecules and Cells
    • /
    • v.46 no.8
    • /
    • pp.513-525
    • /
    • 2023
  • Orange carotenoid protein (OCP) of photosynthetic cyanobacteria binds to ketocarotenoids noncovalently and absorbs excess light to protect the host organism from light-induced oxidative damage. Herein, we found that mutating valine 40 in the α3 helix of Gloeocapsa sp. PCC 7513 (GlOCP1) resulted in blue- or red-shifts of 6-20 nm in the absorption maxima of the lit forms. We analyzed the origins of absorption maxima shifts by integrating X-ray crystallography, homology modeling, molecular dynamics simulations, and hybrid quantum mechanics/molecular mechanics calculations. Our analysis suggested that the single residue mutations alter the polar environment surrounding the bound canthaxanthin, thereby modulating the degree of charge transfer in the photoexcited state of the chromophore. Our integrated investigations reveal the mechanism of color adaptation specific to OCPs and suggest a design principle for color-specific photoswitches.

Optical Properties of Oxotitanium (Ⅳ) Meso-tetrakis(4-sulfonatophenyl)porphyrin Intercalated into the Layered Double Hydroxides (LDH) Studied by Laser Spectroscopy

  • Ryu, Su-Young;Yoon, Min-Joong;Choy, Jin-Ho;Hwang, Sung-Ho;Frube, Akihiro;Asahi, Tsuyoshi;Hiroshi, Masuhara
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.446-452
    • /
    • 2003
  • Some new nanohybrid materials have been synthesized by intercalating the oxotitanium(IV) meso-tetrakis(4- sulfonatophenyl) porphyrin$(O=Ti^{(IV)} TSPP)$ into the Zn/Al layered double hydroxides (LDHs), and their structures and photophysical properties have been investigated by various laser spectroscopic techniques. According to the XRD pattern of the synthesized nanohybrid materials, the macrocycle plane of $O=Ti^{(IV)}$ TSPP are grafted perpendicular to the LDH layers. The $O=Ti^{(IV)}$ TSPP-intercalated LDH exhibits band broadening of the absorption spectrum and a blue shift of Q-band as compared to that observed in solution. Resonance Raman spectral measurements demonstrate that the positively charged LDHs give rise to a slight decrease of the electronic density of the porphyrin ring accompanying a small change of the electronic distribution of the $O=Ti^{(IV)}$ TSPP. Consequently the LDH environment affects the energies of the two highest occupied molecular orbitals (HOMOs) of the $O=Ti^{(IV)}$) TSPP, $a_{1u}$ and $a_{2u}$, producing a mixed orbital character. Being consistent with these electronic structural changes of $O=Ti^{(IV)}$ TSPP in LDH, both the fluorescence spectral change and the fsdiffuse reflectance transient measurements imply that the photoexcitation of the $O=Ti^{(IV)}$ TSPP intercalated into LDH undergoes fast relaxation to the O=Ti(IV) $TSPP^+-LDH^- $charge transfer (CT) state within a few picoseconds, followed by a photoinduced electron transfer between the O=Ti(IV) TSPP and LDHs with a rate constant greater than %1×10^{10}S^{-1}$. No evidence is found for back electron transfer. In conclusion, the $O=Ti^{(IV)}$ TSPP intercalated LDH seems to be a possible candidate for an artificial reaction center for an efficient solar energy conversion system.