• Title/Summary/Keyword: Photoenergy conversion

Search Result 4, Processing Time 0.019 seconds

Single Nanoparticle Photoluminescence Studies of Visible Light-Sensitive TiO2 and ZnO Nanostructures

  • Yoon, Minjoong
    • Rapid Communication in Photoscience
    • /
    • v.2 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • Visible light-sensitive $TiO_2$ and ZnO nanostructure materials have attracted great attention as the promising material for solar energy conversion systems such as photocatalysts for water splitting and environmental purification as well as nano-biosensors. Success of their applications relies on how to control their surface state behaviors related to the exciton dynamics and optoelectronic properties. In this paper, we briefly review some recent works on single nanoparticle photoluminescence (PL) technique and its application to observation of their surface state behaviors which are raveled by the conventional ensemble-averaged spectroscopic techniques. This review provides an opportunity to understand the temporal and spatial heterogeneities within an individual nanostructure, allowing for the potential use of single-nanoparticle approaches in studies of their photoenergy conversion and nano-scale optical biosensing.

Low-Temperature Chemical Sintered TiO2 Photoanodes Based on a Binary Liquid Mixture for Flexible Dye-Sensitized Solar Cells

  • Md. Mahbubur, Rahman;Hyeong Cheol, Kang;Kicheon, Yoo;Jae-Joon, Lee
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.453-461
    • /
    • 2022
  • A chemically sintered and binder-free paste of TiO2 nanoparticles (NPs) was prepared using a binary-liquid mixture of 1-octanol and CCl4. The 1:1 (v/v) complex of CCl4 and 1-octanol easily interacted chemically with the TiO2 NPs and induced the formation of a highly viscous paste. The as-prepared binary-liquid paste (PBL)-based TiO2 film exhibited the complete removal of the binary-liquid and residuals with the subsequent low-temperature sintering (~150℃) and UV-O3 treatment. This facilitated the fabrication of TiO2 photoanodes for flexible dye-sensitized solar cells (f-DSSCs). For comparison purposes, pure 1-octanol-based TiO2 paste (PO) with moderate viscosity was prepared. The PBL-based TiO2 film exhibited strong adhesion and high mechanical stability with the conducting oxide coated glass and plastic substrates compared to the PO-based film. The corresponding low-temperature sintered PBL-based f-DSSC showed a power conversion efficiency (PCE) of 3.5%, while it was 2.0% for PO-based f-DSSC. The PBL-based low- and high-temperature (500℃) sintered glass-based rigid DSSCs exhibited the PCE of 6.0 and 6.3%, respectively, while this value was 7.1% for a 500℃ sintered rigid DSSC based on a commercial (or conventional) paste.

Photochemical properties of a Rhodopsin for Light Energy Conversion obtained from Yellow Sea in Korea

  • Kim, So Young;Jung, Kwang-Hwan
    • Rapid Communication in Photoscience
    • /
    • v.2 no.2
    • /
    • pp.52-55
    • /
    • 2013
  • Proteorhodopsin (PR) is a photoinduced proton pump found abundantly in ocean and fresh water habitat, and has an important role in photoenergy conversion to bioenergy in the living cells. Numerous sequences that encode PR protein variants were discovered by environmental genome sequencing and they indicated the high sequence similarity. A new-type of PR (YS-PR) which had been discovered from the surface of Yellow Sea was found to have only 5 amino acid differences from the previously known green-light absorbing PR (GPR) protein, but showed different photochemical properties. This YS-PR showed a 10 nm red-shifted absorption maximum, when compared with GPR. It also showed slower photocycling rate than GPR. However, the photoconversion rate of YS-PR was fast enough to pump protons. Four different amino acids out of 5 were similar to Blue-light absorbing PR (BPR), suggesting that those residues might be responsible for the observed spectral and photoconverting properties.

Electrochemical Dopamine Sensors Based on Graphene

  • Rahman, Md. Mahbubur;Lee, Jae-Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.185-195
    • /
    • 2019
  • The large surface area and the high electrical conductivity of graphene (GP) allow it to act as an "electron wire" between the redox center of biomolecules and an electrode surface. The faster electron transfer kinetics and excellent catalytic activity of GP facilitate the accurate and selective electrochemical detection of biomolecules. This mini-review provides an overview of the recent developments and progress of GP, functionalized or doped GP, and GP-composites based sensors for the selective and interference-free detection of dopamine (DA). The electrochemical principles and future perspective and challenges of DA sensors were also discussed based on GP.