• Title/Summary/Keyword: Photoelectric conversion

Search Result 47, Processing Time 0.027 seconds

Enhance photoelectric efficiency of PV by optical-thermal management of nanofilm reflector

  • Liang, Huaxu;Wang, Baisheng;Su, Ronghua;Zhang, Ao;Wang, Fuqiang;Shuai, Yong
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.475-485
    • /
    • 2022
  • Crystalline silicon photovoltaic cells have advantages of zero pollution, large scale and high reliability. A major challenge is that sunlight wavelength with photon energy lower than semiconductor band gap is converted into heat and increase its temperature and reduce its conversion efficiency. Traditional cooling PV method is using water flowing below the modules to cool down PV temperature. In this paper, the idea is proposed to reduce the temperature of the module and improve the energy conversion efficiency of the module through the modulation of the solar spectrum. A spectrally selective nanofilm reflector located directly on the surface of PV is designed, which can reflect sunlight wavelength with low photon energy, and even enhance absorption of sunlight wavelength with high photon energy. The results indicate that nanofilm reflector can reduce spectral reflectivity integral from 9.0% to 6.93% in 400~1100 nm wavelength range, and improve spectral reflectivity integral from 23.1% to 78.34% in long wavelength range. The nanofilm reflector can reduce temperature of PV by 4.51℃ and relatively improved energy conversion efficiency of PV by 1.25% when solar irradiance is 1000 W/m2. Furthermore, the nanofilm reflector is insensitive in sunlight's angle and polarization state, and be suitable for high irradiance environment.

Improved Photoelectric Conversion Efficiency of Perovskite Solar Cells with TiO2:TiCl4 Electron Transfer Layer (TiO2:TiCl4 전자수송층을 도입한 페로브스카이트 태양전지의 광전변환효율 향상)

  • Ahn, Joon-sub;Kang, Seung-gu;Song, Jae-gwan;Kim, Jin-bong;Han, Eun-mi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.4
    • /
    • pp.85-90
    • /
    • 2017
  • The $TiCl_4$ as a blocking material is adsorbed in the mesoporous $TiO_2$ electron transfer layer(ETL) of the Perovskite solar cell to prevent the direct contact between the FTO electrode and the photoactive layer(AL), and facilitate the movement of the electrons between $TiO_2:TiCl_4$ ETL and Perovskite AL to improve the photoelectric conversion efficiency(PCE). The structure of the perovskite solar cell is FTO/$TiO_2:TiCl_4$/Perovskite($CH_3NH_3PbI_3$)/spiro-OMeTAD/Ag. It was investigated that the dipping time of the $TiO_2$ into $TiCl_4$ aqueous solution affects on the photoelectric characteristics of the device. By the dipping for 30 minutes, the PCE of the perovskite solar cell with the $TiO_2:TiCl_4$ ETL was the highest 10.46%, which is 27% higher than the cell with $TiO_2$ ETL. From SEM, EDS, and XRD characterization on the $TiO_2:TiCl_4$ ETL and the perovskite AL, it was measured that the decrease of the porosity of the $TiO_2$ layer, the detection of the Cl component by the $TiCl_4$ adsorption, the cube-type morphology of perovskite AL, and shift of the $PbI_2$ peak of the perovskite AL. From these results, it was confirmed that the $TiO_2:TiCl_4$ ETL and the perovskite AL were formed.

Effect of performance in $TiO_2$ paste for Dye-Sensitized Solar Cells by $TiO_2$ nanofiber ($TiO_2$ 나노파이버를 첨가한 광전극용 $TiO_2$ 페이스트가 염료감응 태양전지의 광전변환 특성에 미치는 영향)

  • Baek, Hyoung-Youl;Li, Hu;Jin, En-Mei;Park, Kyung-Hee;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.358-359
    • /
    • 2008
  • Solar cell based on dye-sensitized photoelectric conversion was studied by investigating the effects of the amount of $TiO_2$ nanofiber added to the $TiO_2$ paste, on surface morphology, good electric of the $TiO_2$ films and on the solar cell performance. Energy conversion efficiency was found to increased with $TiO_2$ nanofiber addition up to 7wt% in $TiO_2$ films. Maximum increase upto 15% in the efficiently was observed at 7 wt. % of $TiO_2$ nanofiber in $TiO_2$ electrode.

  • PDF

Anti-Reflection Thin Film For Photoelectric Conversion Efficiency Enhanced of Dye-Sensitized Solar Cells (염료감응형 태양전지의 광전변환효율 향상을 위한 무반사 박막)

  • Jung, Haeng-Yun;Ki, Hyun-Chul;Hong, Kyung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.814-818
    • /
    • 2016
  • DSSCs (dye-sensitized solar cells) based on $TiO_2/SiO_2$ multi layer AR (anti-reflection) coating on the outer glass FTO (fluorine-doped tin oxide) substrate are investigated. We have coated an AR layer on the surface of a DSSCs device by using an IAD (ion beam-assisted deposition) system and investigated the effects of the AR layer by measuring photovoltaic performance. Compared to the pure FTO substrate, the multi layer AR coating increased the total transmittance from 67.4 to 72.9% at 530 nm of wavelength. The main enhancement of solar conversion efficiency is attributed to the reduction of light reflection at the FTO substrate surface. This leads to the increase of Jsc and the efficiency improvement of DSSCs.

Local Photoswitching Effects of Cytochrome c/Viologen/GFP Hetero-Thin Film

  • Yu, Chang-Jun;Choe, Jeong-U;Park, Se-Jeong;Nam, Yun-Seok;O, Byeong-Geun;Lee, Won-Hong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.823-826
    • /
    • 2001
  • In the initial process of photosynthesis, a biological electron transfer system, photoelectric conversion occurs and then long-range electron transfer takes place very efficiently in one direction through the biomolecules. The metal/insulator/metal structured device consisting of GFP, viologen, cytochrome c hetero-thin film was presented based on the biomimesis. GFP, viologen, and cytochrome c was used as an electron sensitizer, a mediator, and an electron acceptor. Cytochrome c molecules and viologen molecules were deposited by Langmuir-Blodgett (LB) technique, and GFP molecules were adsorbed by self-assembly method (SAM). Surface morphology of hetero-thin film was analyzed by scanning tunneling microscopy (STM). Local photoswitching effects of a proposed photodiode were verified by current-voltage measurements using hybrid STM/I-V measurement system.

  • PDF

Nanoscale Protein Chip based on Electrical Detection

  • Choi, Jeong-Woo
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.18-18
    • /
    • 2005
  • Photoinduced electron transport process in nature such as photoelectric conversion and long-range electron transfer in photosynthetic organisms are known to occur not only very efficiently but also unidirectionally through the functional groups of biomolecules. The basic principles in the development of new functional devices can be inspired from the biological systems such as molecular recognition, electron transfer chain, or photosynthetic reaction center. By mimicking the organization of the biological system, molecular electronic devices can be realized $artificially^{1)}$. The nano-fabrication technology of biomolecules was applied to the development of nano-protein chip for simultaneously analyzing many kinds of proteins as a rapid tool for proteome research. The results showed that the self-assembled protein layer had an influence on the sensitivity of the fabricated bio-surface to the target molecules, which would give us a way to fabricate the nano-protein chip with high sensitivity. The results implicate that the biosurface fabrication using self-assembled protein molecules could be successfully applied to the construction of nanoscale bio-photodiode and nano-protein chip based on electrical detection.

  • PDF

A Formation of Hole Pattern on Ti Electrode by Lift-off and Its Application to TCO-less Dye-sensitized Solar Cells (Ti 전극의 Lift-off 공정을 이용한 홀 패턴 형성과 TCO-less 염료감응형 태양전지의 응용)

  • Jung, Haeng-Yun;Ki, Hyun-Chul;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.175-179
    • /
    • 2015
  • In this study, we propose Ti hole pattern structure on the transparent conductive oxide (TCO) less dye-sensitized solar cells (DSSCs) using the lift-off process to improve the low light transmittance and low efficiency caused by opaque Ti electrode. The formation of Ti hole patterns make it possible to move the dye adsorption and electrolyte. The DSSCs with Ti hole patterns showed a higher photoelectric conversion efficiency (PCE) than those with general structure by 11.1%. As a result, The Ti hole pattern structure can be improved to increase the light absorption of the dyes and PCE of the TCO-less DSSCs is also increased.

Photovoltaic Efficiencies on Dye-Sensitized Solar Cells Assembled with Graphene-Linked TiO2 Anode Films

  • Kim, A-Young;Kim, Ji-Eun;Kim, Min-Young;Ha, Seung-Won;Tien, Ngyen Thi Thuy;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3355-3360
    • /
    • 2012
  • To promote the photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs), graphene is introduced as a working electrode with $TiO_2$ in this study, because it has great transparency and very good conductivity. XRD patterns indicate the presence of graphene and $TiO_2$ particles in graphene-linked $TiO_2$ samples. Moreover, TEM pictures also show that the nano-sized $TiO_2$ particles are highly dispersed and well-linked onto the thin layered graphene. On the basis of the UV-visible spectra, the band gaps of $TiO_2$, 1.0 wt % graphene-$TiO_2$, 5.0 wt % graphene-$TiO_2$, and 10.0 wt % graphene-$TiO_2$ are 3.16, 2.94, 2.25, and 2.11 eV, respectively. Compared to pure $TiO_2$, the energy conversion efficiency was enhanced considerably by the application of graphene-linked $TiO_2$ anode films in the DSSCs to approximately 6.05% for 0.1 wt % graphene-$TiO_2$ with N719 dye (10.0 mm film thickness and $5.0mm{\times}5.0mm$ cell area) under $100mW/cm^2$ of simulated sunlight. The quantum efficiency was the highest when 1.0 wt % of graphene was used. In impedance curves, the resistance was smallest for 1.0 wt % graphene-$TiO_2$-DSSC.

A study on a power plant using Dye-sensitized solar cells in low light environments (저조도 환경에서의 염료감응형 태양전지를 활용한 발전소자에 관한 연구)

  • Kim, Sun-Geum;Baek, Sung-June
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.267-272
    • /
    • 2021
  • Recently, attention has been focused on renewable energy and carbon neutrality to resolve fossil energy depletion and environmental problems. In addition, high-rise urban buildings and an increase in building energy are rapidly increasing. There are many restrictions on installing solar power in urban areas. In addition, as buildings become taller, a lot of low-light environments in which shade is formed occur. Therefore, in this study, we intend to develop a power plant capable of generating electric power in an outdoor low-light environment and indoor lighting environment. The power plant in a low-light environment used a dye-sensitized solar cell. A unit cell and a 20cm×20cm module were manufactured, and the electrical characteristics of the power plant were measured using light sources of LED, halogen lamp, and 3-wavelength lamp. The photoelectric conversion efficiency of the unit cell was 17.2%, 1.28%, 19,2% for each LED, halogen lamp, and 3-wavelength lamp, and the photoelectric conversion efficiency of the 20cm×20cm module was 10.9%, 8.7%, and 11.8%, respectively. In addition, the maximum power value of the module was 13.1mW, 15.7 mW, and 14.2 mW for each light source, respectively, confirming the possibility of power generation in a low-light environment

A Study on Rheology Characteristics of Ag Paste for Screen Printing Method for Silicon Solar Cells Electrodes Capable of Forming High Aspect Ratio (고온 소결형 실리콘 태양 전지의 High Aspect Ratio 전극 형성이 가능한 Ag 페이스트의 레오로지 특성 연구)

  • Oh, Tae-Hun;Kim, Sung-Bin;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.1
    • /
    • pp.15-24
    • /
    • 2010
  • Photovoltaic solar cells are all in the incident because they are not converted into electrical energy, high-efficiency solar cells in order to reduce the loss of elements must be. Significant factor in the loss of solar cells, optical loss and electrical loss can be divided into. Optical losses occur when the sun will be joined on the surface of the reflection, the shadow loss due to electrodes, and the losses are in the solar wavelengths. Commercialization is currently the most common solar cells on the front of the light incident on the electrode is formed. Therefore, the shadow caused by the electrode to cover the dead area of the sun, due to factors that hinder the absorption of sunlight which is shadowing them and conversion efficiency of solar cells is the inhibition factor. These barriers to eliminate the electrode linewidth reduces the shadowing to reduce, but simply of the electrode line width is reduced electrode area by reducing the series resistance elevates this because to improve the electrode Aspect ratio(height/width) to increase Ag development of paste is required. In this study, aspect ratio of screen-printing method to increase the electrode Ag paste composition of the binder for the characterization of rheology in the shadow of the electrode by reducing the optical loss of the photoelectric conversion efficiency of solar cells to boost the performance measures was. Properties and printability of the paste, the binder resin sintered characteristics that affect the thermal properties are excellent with a good screen printability acrylic resin, ethyl cellulose, using a resin were evaluated. Prepared paste rheology properties, was formed to evaluate the electrode conductivity and aspect ratio.