• Title/Summary/Keyword: Photodegradation efficiency

Search Result 55, Processing Time 0.025 seconds

Ag2Se Modified TiO2 Heterojunction with Enhanced Visible-Light Photocatalytic Performance

  • Zhu, Lei;Tang, Jia-Yao;Fan, Jia-Yi;Sun, Chen;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.657-664
    • /
    • 2021
  • To build a highly active photocatalytic system with high efficiency and low cast of TiO2, we report a facile hydrothermal technique to synthesize Ag2Se-nanoparticle-modified TiO2 composites. The physical characteristics of these samples are analyzed by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy and BET analysis. The XRD and TEM results show us that TiO2 is coupled with small sized Ag2Se nanoplate, which has an average grain size of about 30 nm in diameter. The agglomeration of Ag2Se nanoparticles is improved by the hydrothermal process, with dispersion improvement of the Ag2Se@TiO2 nanocomposite. Texbrite BA-L is selected as a simulated dye to study the photodegradation behavior of as-prepared samples under visible light radiation. A significant enhancement of about two times the photodegradation rate is observed for the Ag2Se@TiO2 nanocomposite compared with the control sample P25 and as-prepared TiO2. Long-term stability of Ag2Se@TiO2 is observed via ten iterations of recycling experiments under visible light irradiation.

Quantitative Evaluation on Photocatalytic Activity of Anatase TiO2 Nanocrystals in Aqueous Solution

  • Jeon, Byungwook;Kim, Yu Kwon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.4
    • /
    • pp.96-101
    • /
    • 2015
  • Quantitative evaluation of photocatalytic activity of oxide nanoparticles in aqueous solution is quite challenging in that the kinetic reaction rate is determined by a complicated interplay among various limiting factors such as light scattering and absorption, diffusion and adsorption of reactants in condensed liquid phase, photoexcited charge separation and recombination rate, and the exact nature of active sites determined by detailed morphology and crystallinity of nanocrystals. Here, we present our simple experimental results showing that the kinetic regime of a typical photocatalytic degradation experiment over UV-irradiated $TiO_2$ nanoparticles in aqueous solution is in that dominated by the photoactivity of $TiO_2$ and its concentration. This result lays a firm ground of using the measured kinetic reaction rate in evaluating photocatalytic efficiency of oxide nanocrystals under evaluation.

ZnO on Thiolated Graphene Oxide as Efficient Photocatalyst for Degradation of Methylene Blue

  • Kim, Yu Hyun;Choi, Hyun Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3586-3590
    • /
    • 2013
  • We present here an efficient and simple method for preparation of highly active heterogeneous ZnO photocatalyst (graphene oxide-zinc oxide: GO-ZnO), specifically by deposition of ZnO nanoparticles onto thiolated GOs. The resultant GO-ZnO sample was characterized by TEM, XRD, Auger, XPS, and Raman measurements, revealing that the size-similar and quasi-spherical ZnO nanoparticles were anchored to the thiolated GO surfaces. The average particle diameter was about 2.5 nm. In the photodegradation of methylene blue (MB) under ultraviolet (UV) light, GO-ZnO exhibited remarkably enhanced photocatalytic efficiency compared with thiolated GO and pure ZnO particles. This strong photocatalytic performance of GO-ZnO can be attributed to the suppression of electron recombination and the enhancement of mass transportation. The results showed that thiolated GO is the preferable supporting material.

Temperature-Induced Release of All-trans-Retinoic Acid Loaded in Solid Lipid Nanoparticles for Topical Delivery

  • Lee, Chang-Moon;Jeong, Hwan-Jeong;Park, Ji-Won;Kim, Jin;Lee, Ki-Young
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.682-685
    • /
    • 2008
  • The aim of this work was to develop and evaluate solid lipid nanoparticles (SLN) containing all-trans-retinoic acid (ATRA) for topical delivery. SLN composed of coconut oil and curdlan improved the suspension instability of ATRA in aqueous solution. The photodegradation of ATRA by light was reduced by incorporation in SLN. The loading efficiency of ATRA in SLN was higher than 95% (w/w). The amounts of ATRA released from SLN at $4^{\circ}C$ and at $37^{\circ}C$ were less than 15% and more than 60% (w/w) for 96 h, respectively. The ATRA-loaded SLN can be used as a potential carrier for topical delivery.

Preparation of Ag2Se-Graphene-TiO2 Nanocomposite and its Photocatalytic Degradation (Rh B)

  • Ali, Asghar;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.388-394
    • /
    • 2017
  • Here, utilizing rhodamine B (RhB) as standard color dye, we examined the photo degradation proficiency of $Ag_2Se-Graphene-TiO_2$ nanocomposites under visible light irradiation; samples were prepared by ultrasonication techniques and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopic investigation and UV-Vis absorbance spectra examination. Our outcomes demonstrate that the $Ag_2Se-G-TiO_2$ nanocomposite showed significant photodegradation efficiency as compared with those of $TiO_2-G$ and $Ag_2Se-G$, with around 85.2% of Rhodamine B (RhB) degraded after 180 min. It is concluded that the $Ag_2Se-G-TiO_2$ nanocomposite is a competent candidate for dye pollutants.

A Study on the Photodegradation of VOC by High efficiency System (고효율 광분해 시스템을 이용한 VOC 분해 성능 연구)

  • Do, Young-Woong;Park, Seoung-Ae;Ha, Jin-Wook
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.11a
    • /
    • pp.386-389
    • /
    • 2007
  • 본 논문은 $TiO_2$(Degussa, P-25), 바인더(A-9540) 그리고 용제의 배합비율을 바꾸어 코팅액을 제조하여 금속판에 코팅한 후, 고농도의 IPA를 주입하여 분해효율을 고찰하였다. 고형분 함량 비율 변화에서는 $TiO_2$ 함량은 증가하고 바인더가 감소할수록 좋은 효율을 보였고, 용제는 ethanol과 MEK 두 가지 중에 MEK의 분해효율이 좋았다. 용제(MEK)함량 비율 변화에서는 일정량의 용제가 있을 경우 분해효율이 좋았고, 용제함량이 낮아질 경우 코팅액 점도가 높아지고 건조 후에는 표면이 갈라지는 현상을 보였다. 결국, 용제함량 비율 변화는 바인더 함량 실험에도 영향을 주어 1.75:0.25:10일 때 가장 좋은 분해효율을 보였다.

  • PDF

UV Photodegradation of Chlorinated VOCs: Removal Efficiency and Products (염소계 VOCs의 UV 광분해 연구: 제거율 및 부산물)

  • Kang, InSun;Xi, Jinying;Wang, Can;Hu, Hong-Ying
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.2
    • /
    • pp.87-96
    • /
    • 2017
  • In this study, 4 gases containing typical chlorinated volatile organic compounds (VOCs) were treated by ultraviolet (UV) irradiation. The typical chlorinated VOCs are dichloromethane (DCM), trichloromethane (TCM), carbon tetrachloride (CTC) and trichloroethylene (TCE). The removal efficiency (RE) and the products of chlorinated VOCs by UV irradiation are investigated. At this time, 2 types of background gas (air and nitrogen) were used to figure out the RE by photooxidation and photolysis. The specification of UV-lamp used in this study was low-pressure mercury lamp emitting wavelength of 185~254 nm. The experimental conditions were set as initial VOC concentration of $180{\pm}10ppm$, empty bed retention time (EBRT) of 53 s, temperature of $23{\pm}2^{\circ}C$ and relative humidity of $65{\pm}5%$. In the photolysis condition with nitrogen ($N_2$) as background gas, the averaged RE of the 4 types of chlorinated VOCs was about 24% higher than that with photooxidation; and the REs of VOCs except CTC were confirmed as >99%. The composition of off-gases after UV photooxidation in air was investigated and several intermediates from DCM, TCM and TCE were detected by GC/MS. Among them, phosgene which is a toxics was detected as an intermediate of TCM. In addition, the concentration of carbon dioxide ($CO_2$) in the off-gases was measured to calculate the mineralization rate (MR). With the photooxidation, TCE showed the highest RE (>99%) while MR was the lowest (17%); and the MR of DCM was the highest (86%). In addition, particulate matters (PM) in the off-gases was also detected and high concentrated $PM_{10}$ ($21,580{\mu}g{\cdot}m^{-3}$) and $PM_{2.5}$ ($6,346{\mu}g{\cdot}m^{-3}$) were detected in TCE off-gas. More than 99% of the chlorinated VOCs could be removed using UV254-185 nm lamp, while it is necessary to conduct further studies on the production and treatment of secondary pollutants.

A Comparison of Efficiency of Decolorizing Rhodamine B using Lab-Scale Photocatalytic Reactors : Slurry Reactor, IWCR and PFBR

  • Na, Young-Soo;Lee, Tae-Kyung;Lee, Song-Woo;Lee, Chang-Han;Kim, Do-Han;Park, Young-Seek;Song, Seung-Koo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_4
    • /
    • pp.157-164
    • /
    • 2001
  • The performance of fluidized-bed reactor with Photomedia, immobilized TiO$_2$ onto the porous ceramic ball using a sol-gel method has been studied in this work. A simple model substrate, dilute Rhodamine B (RhB), was decolorized at room temperature. For the purpose of comparison, the slurry reactor and the Inner Wall Coated Reactor (IWCR) were used. The aim of this work was to develop the photocatalytic fluidized bed reactor (PFBR) through contrasting the photodegradability of various reactors such as the TiO$_2$slurry reactor, the inner-wall coated reactor (IWCR). In this study, the RhB was decolorized in three types of reactor. Even though the reaction rate constant of PFBR was lower than that of slurry reactor, PFBR had the advantages of preventing the wash-out of photocatalyst, so it can be operated continuously.

  • PDF

Photodegradation of Rhodamine B in $TiO_2$ suspension

  • Na, Young-Soo;Kim, Ji-Hye;Lee, Tae-Kyung;Lee, Song-Woo;Song, Seung-Koo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_3
    • /
    • pp.149-155
    • /
    • 2001
  • In recent years, rapid technological advances in the textile and dyeing industry have yielded benefits to society but have also generated new and significant environmental problems. The treatment alternatives applicable for the removal of color vary, depending upon the type of dye wastewater Advanced oxidation processes are considered to provide more permanent merits. One of these oxidation treatments attracting much attention is photocatalytic oxidation, which uses TiO$_2$ due to its non-toxic, insoluble liquid as well as a highly reactive nature under UV irradiation. This study sets out to demonstrate the effect of photocatalyst dosage, dye concentrations, pH and light intensity on color removal efficiency under aerobic conditions. The results of this study show Rhodamine B(RhB) was not decolorized when a dye solution was exposed only to air or treated by TiO$_2$ only In the presence of both TiO$_2$ and UV light, however, the presence of RhB decreased up to 95 % within 60minutes. The more addition TiO$_2$ and the more diluted dye solution, showed a higher removal rate.

  • PDF

Photocatalytic degradation of textile dye CI Basic Yellow 28 wastewater by Degussa P25 based TiO2

  • Konecoglu, Gulhan;Safak, Toygun;Kalpakli, Yasemen;Akgun, Mesut
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.25-38
    • /
    • 2015
  • Wastewaters of textile industry cause high volume colour and harmful substance pollutions. Photocatalytic degradation is a method which gives opportunity of reduction of organic pollutants such as dye containing wastewaters. In this study, photocatalytic degradation of C.I. Basic Yellow 28 (BY28) as a model dye contaminant was carried out using Degussa P25 in a photocatalytic reactor. The experiments were followed out at three different azo dye concentrations in a reactor equipped UV-A lamp (365 nm) as a light source. Azo dye removal efficiencies were examined with total organic carbon and UV-vis measurements. As a result of experiments, maximum degradation efficiency was obtained as 100% at BY28 concentration of $50mgL^{-1}$ for the reaction time of 2.5 h. The photodegradation of BY28 was described by a pseudo-first-order kinetic model modified with the langmuir-Hinshelwood mechanism. The adsorption equilibrium constant and the rate constant of the surface reaction were calculated as $K_{dye}=6.689{\cdot}10^{-2}L\;mg^{-1}$ and $k_c=0.599mg\;L^{-1}min^{-1}$, respectively.