• Title/Summary/Keyword: Photochemical oxidant

Search Result 37, Processing Time 0.033 seconds

Photochemical Oxidants Damage in Rice Plants (Photochemical Oxidants에 의한 수도피해(水稻被害) 해석(解析))

  • Jeong, Young-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.2 no.2
    • /
    • pp.103-107
    • /
    • 1983
  • The effect of photochemical oxidants on rice plants was measured by growing the rice plants Nihonbare in pot in charcoal-manganese oxide filtered atmosphere and non-filtered air. Visible injury on the leaf blades of rice plants were observed in plants grown under the unfiltered air chamber, but plants under filtered air chamber were free from any injury. Fresh weight of stem and root at maximum tillering stage in unfiltered chamber were 16.8 and 46.4% less than filtered air chamber, respectively. Grain yield in unfiltered air chamber was also reduced by 14.7% compared to that of filtered air chamber. And the reduced yield paralleled increase in concentration of oxidants in the atmosphere at the experimental site. ABA content in rice plants cultivated in unfiltered air chamber was higher than in filtered air chamber, but the root activity of rice plants in unfiltered air chamber was remarkably decreased.

  • PDF

A Review on the Photochemical Oxidant Modeling as Applied to Air Quality Studies in Complex Terrain

  • Hwa-Woon Lee;Yoo
    • Journal of Environmental Science International
    • /
    • v.1 no.1
    • /
    • pp.19-33
    • /
    • 1992
  • The high oxidants, which occur the daily maximum concentrations in the afternoon, are transported into the other region via long range transport mechanisms or trapped within the shallow mixing boundary layer and then removed physically (deposition, transport by mountain wind, etc.) and chemically (reaction with local sources). Therefore, modeling formation of photochemical oxidants requires a complex description of both chemical and meteorolog ital processecs . In this study, as a part of air quality studies, we reviewed various aspects of photochemical modeling on the basis of currently available literature. The result of the review shows that the model is based on a set of coupled continuity equations describing advection, diffusion, transport, deposition, chemistry, emission. Also photochemical oxidant models require a large amount of input data concerned with all aspects of the ozone life cycle. First, emission inventories of hydrocarbon and nitrogen oxides, with appropriate spatial and temporal resolution. Second, chemical and photochemical data allowing the quantitative description of the formation of ozone and other photochemically-generated secondary pollutants. Third, dry deposition mechanisms particularly for ozone, PAN and hydrogen peroxide to account for their removal by absorption on the ground, crops, natural vegetation, man-made and water surfaces. Finally, meteorological data describing the transport of primary pollutants away from their sources and of secondary pollutants towards the sensitive receptors where environmental damage may occur. In order to improve our present study, shortcomings and limitation of existing models are pointed out and verification Process through observation is emphasized.

  • PDF

Analysis of the Correlation between Urban High Temperature Phenomenon and Air Pollution during Summer in Daegu

  • An, Eun-Ji;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.831-840
    • /
    • 2019
  • Recently, summer high temperature events caused by climate change and urban heat island phenomenon have become a serious social problem around the world. Urban areas have low albedo and huge heat storage, resulting in higher temperatures and longer lasting characteristics. To effectively consider the urban heat island measures, it is important to quantitatively grasp the impact of urban high temperatures on the society. Until now, the study of urban heat island phenomenon had been carried out focusing only on the effects of urban high temperature on human health (such as heat stroke and sleep disturbance). In this study, we focus on the effect of urban heat island phenomenon on air pollution. In particular, the relationship between high temperature phenomena in urban areas during summer and the concentration of photochemical oxidant is investigated. High concentrations of ozone during summer are confirmed to coincide with a day when the causative substances (NO2,VOCs) are high in urban areas during the early morning hours. Further, it is noted that the night urban heat island intensity is large.. Finally, although the concentration of other air pollutants has been decreasing in the long term, the concentration of photochemical oxidant gradually increases in Daegu.

A Review on the Photochemical Oxidant Modeling as Applied to Air Quality Studies in Complex Terrain

  • Lee Hwa-Woon;Kim Yoo-Keun;Won Gyeong-Mee;Park Jong-Kil
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.1 no.1
    • /
    • pp.19-33
    • /
    • 1997
  • The high oxidants, which occur the daily maximum concentrations in the afternoon, are transported into the other region via long range transport mechanisms or trapped within the shallow mixing boundary layer and then removed physically (deposition, transport by mountain wind, etc.) and chemically (reaction with local sources). Therefore, modeling formation of photochemical oxidants requires a complex description of both chemical and meteorological processes. In this study, as a part of air quality studies, we reviewed various aspects of photochemical modeling on the basis of currently available literature. The result of the review shows that the model is based on a set of coupled continuity equations describing advection, diffusion, transport, deposition, chemistry, emission. Also photochemical oxidant models require a large amount of input data concerned with all aspects of the ozone life cycle. First, emission inventories of hydrocarbon and nitrogen oxides, with appropriate spatial and temporal resolution. Second, chemical and photochemical data allowing the quantitative description of the formation of ozone and other photochemically-generated secondary pollutants. Third, dry deposition mechanisms particularly for ozone, PAN and hydrogen peroxide to account for their removal by absorption on the ground, crops, natural vegetation, man-made and water surfaces. Finally, meteorological data describing the transport of primary pollutants away from their sources and of secondary pollutants towards the sensitive receptors where environmental damage may occur. In order to improve our present study, shortcomings and limitation of existing models are pointed out and verification process through observation is emphasized.

  • PDF

Characteristic Distributions of Hydrogen Peroxide and Methyl Hydroperoxide and over the North Pacific Ocean

  • Lee, Meehye;Brian G. Heikes
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E2
    • /
    • pp.85-95
    • /
    • 2002
  • Hydrogen peroxide and methyl hydroperoxide were measured over the northwestern Pacific Ocean during NASA's PEM (Pacific Exploratory Mission) -West. The first experiment (PEM -West A) was conducted in the fall of 1991 and PEM-West B in the early spring of 1994. Hydroperoxide data were obtained on board the NASA DC -8 aircraft through the entire depth of the troposphere. Average concentrations of both H$_2$O$_2$and CH$_3$OOH were higher during PEM -West A than B. The seasonal difference in hydroperoxide distribution was determined by the degree of photochemical activities and the strength and location of jetstream, which led to extensive and rapid continental outflow during the PEM-West B. While for H$_2$O$_2$distribution, a longitudinal gradient was more apparent than a latitudinal gradient, it was opposite for the CH$_3$OOH distribution. The longitudinal gradient indicates the proximity to the anthropogenic sources from the Asian continent, but the latitudinal gradient reflects photochemical activity. During PEM -West B, the ratio of C$_2$H$_2$/CO, a tracer for continental emission was raised and high concentrations of H$_2$O$_2$were associated with high ratios. The flux of hydroperoxide toward the North Pacific was also enhanced in the early spring. The eastward fluxes of H$_2$O$_2$ were 9% and 17% of the average photochemical production over the Pacific Basin between 140°E and 130°W during PEM-West A and B, respectively. For CH$_3$OOH, these ratios were 8% and 13%. Considering the lifetime of hydroperoxide and the rapid transport of pollutants, the export of hydroperoxide with other oxidants would have a significant influence on oxidant cycles over the North Pacific during winter/spring.

Environmental Impacts Assessment of the Wheat Flour Production Process Using the Life Cycle Assessment Method (LCA 기법을 이용한 소맥분 생산 공정의 환경 영향 평가)

  • Chu, Duk-Sung;Kwon, Hyuk-Ku;Kim, Jong-Geu;Lee, Jang-Hoon
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • The life cycle assessment method for environmental impact assessment was used, in this study, to assess the production process of wheat flour which is the most important material in the food industry. Environmental impact assessments were compared between that of the Ministry of Environment, Republic of Korea (method I) with that of the Ministry of Commerce, Industry and Energy (method II). Life cycle inventories (LCI) was performed using internal and external databases and the production statistics database of company S. The procedure of life cycle impact assessment (LCIA) was followed in terms of classification, characterization, normalization and weighting to identify the key issues. The impact categories of method I were divided into 8 categories with consideration of : abiotic resources depletion, global warming, ozone depletion, photochemical oxidant creation, acidification and eutrophication. The impact categories of method II were divided into 10 categories with consideration of: abiotic resources depletion, global warming, ozone depletion, photochemical oxidant creation, acidification, eutrophication, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity and terrestrial ecotoxicity.

Environmental Impact Evaluation for Glass Bottle Recycle using Life Cycle Assessment (LCA를 이용한 유리병 재활용의 환경영향 평가)

  • Baek, Seung-Hyuk;Kim, Hyung-Jin;Kwon, Young-Shik
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1067-1074
    • /
    • 2014
  • Life Cycle Assessment(LCA) has been carried out to evaluate the environmental impacts of glass bottle recycle. The LCA consists of four stages such as Goal and Scope Definition, Life Cycle Inventory(LCI) Analysis, Life Cycle Impact Assessment(LCIA), and Interpretation. The LCI analysis showed that the major input materials were water, materials, sand, and crude oil, whereas the major output ones were wastewater, $CO_2$, and non-hazardous wastes. The LCIA was conducted for the six impact categories including 'Abiotic Resource Depletion', 'Acidification', 'Eutrophication', 'Global Warming', 'Ozone Depletion', and 'Photochemical Oxidant Creation'. As for Abiotic Resource Depletion, Acidification, and Photochemical Oxidant Creation, Bunker fuel oil C and LNG were major effects. As for Eutrophication, electricity and Bunker fuel oil C were major effects. As for Global Warming, electricity and LNG were major effects. As for Ozone Depletion, plate glasses were major effects. Among the six categories, the biggest impact potential was found to be Global Warming as 97% of total, but the rest could be negligible.

Sensitivity of Ozone Concentrations to Initial Concentrations Applying the Carbon Bond Mechanism IV

  • Lee, Hwa-Woon;Kim, Heon-Sook;Oh, Eun-Joo;Kim, Yeon-Hee
    • Journal of Environmental Science International
    • /
    • v.12 no.11
    • /
    • pp.1159-1165
    • /
    • 2003
  • The Carbon Bond Mechanism IV has been developed for use in urban- and regional-scale oxidant models. The photochemical mechanism, CBM4, contains extensive improvements to earlier carbon bond mechanisms in the chemical representations of aromatics, biogenic hydrocarbons, peroxyacetyl nitartes, and formaldehyde. Ozone is produced mainly by nitrogen oxides and hydrocarbon. By altering the initial concentrations of the mechanism, an analysis of the sensitivity of ozone concentrations to VOC/NO$\_$x/ ratios and VOC composition is conducted in this one-dimensional mechanism. Note that it is considered a chemical mechanism in order to understand the photochemical reactions within this mechanism. It analyzed the results of these simulations by applying a NO$\_$x/-sensitive and a VOC-sensitive regime. These sensitivity regimes are changed to match the relative contribution of VOC and NO$\_$x/ concentrations to ozone production in simulations of two sets.

Effective Treatment of N-Nitrosodimethylamine using Advanced Oxidation Process (UV Process) and Toxicity Evaluation (고도산화공정(UV공정)을 이용한 NDMA의 효율적인 처리와 독성 평가)

  • Song, Won-Yong;Chang, Soon-Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.90-95
    • /
    • 2009
  • This study investigates the oxidative degradation of N-nitrosodimethylamine (NDMA), a probable human carcinogen, by advanced oxidation process (i.e., UV process). The experiments were performed with various pH, initial concentration, UV intensity, and addition of $H_2O_2$ or $TiO_2$ on UV process. The results showed that the direct UV photolysis was the most effective treatment method. The lower pH, intial concentration and higher intensity of UV stimulated higher NDMA removal. However, addition of oxidant ($H_2O_2$, $TiO_2$) slows down photochemical treatment of NDMA since the oxidant can filter out the UV light and block it to reach the NDMA molecules. Dimethylamine (DMA) and nitrite were found to be a major byproduct from NDMA oxidation. To evaluate the chronic toxicity effects of UV-treated NDMA on the growth of microalgae, "Skeletonema costatum", was studied as long term experiments. Results demonstrated that after the 13 days exposure the chronic toxicity was decreased about 15% with application of UV process on NDMA degradation.