• Title/Summary/Keyword: Photocatalytic-reaction

Search Result 281, Processing Time 0.03 seconds

Control of Methyl Tertiary-Butyl Ether via Carbon-Doped Photocatalysts under Visible-Light Irradiation

  • Lee, Joon-Yeob;Jo, Wan-Kuen
    • Environmental Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.179-184
    • /
    • 2012
  • The light absorbance of photocatalysts and reaction kinetics of environmental pollutants at the liquid-solid and gas-solid interfaces differ from each other. Nevertheless, many previous photocatalytic studies have applied the science to aqueopus applications without due consideration of the environment. As such, this work reports the surface and morphological characteristics and photocatalytic activities of carbon-embedded (C-$TiO_2$) photocatalysts for control of gas-phase methyl tertiary-butyl ether (MTBE) under a range of different operational conditions. The C-$TiO_2$ photocatalysts were prepared by oxidizing titanium carbide powders at $350^{\circ}C$. The characteristics of the C-$TiO_2$ photocatalysts, along with pure TiC and the reference pure $TiO_2$, were then determined by X-ray diffraction, scanning emission microscope, diffuse reflectance ultraviolet-visible-near infrared (UV-VIS-NIR), and Fourier transform infrared spectroscopy. The C-$TiO_2$ powders showed a clear shift in the absorbance spectrum towards the visible region, which indicated that the C-$TiO_2$ photocatalyst could be activated effectively by visible-light irradiation. The MTBE decomposition efficiency depended on operational parameters, including the air flow rate (AFR), input concentration (IC), and relative humidity (RH). As the AFRs decreased from 1.5 to 0.1 L/min, the average efficiencies for MTBE increased from 11% to 77%. The average decomposition efficiencies for the ICs of 0.1, 0.5, 1.0, and 2.0 ppm were 77%, 77%, 54%, and 38%, respectively. In addition, the decomposition efficiencies for RHs of 20%, 45%, 70%, and 95% were 92%, 76%, 50%, and 32%, respectively. These findings indicate that the prepared photocatalysts could be effectively applied to control airborne MTBE if their operational conditions were optimized.

Photocatalytic Generated Oxygen Species Properties by Fullerene Modified Two-Dimensional MoS2 and Degradation of Ammonia Under Visible Light

  • Zou, Cong-Yang;Meng, Ze-Da;Zhao, Wei;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.353-366
    • /
    • 2021
  • In this study, photocatalytic degradation of ammonia in petrochemical wastewater is investigated by solar light photocatalysis. Two-dimensional ultra-thin atomic layer structured MoS2 are synthesized via a simple hydrothermal method. We examine all prepared samples by means of physical techniques, such as SEM-EDX, HRTEM, FT-IR, BET, XRD, XPS, DRS and PL. And, we use fullerene modified MoS2 nanosheets to enhance the activity of photochemically generated oxygen (PGO) species. Surface area and pore volumes of the MoS2-fullerene samples significantly increase due to the existence of MoS2. And, PGO oxidation of MB, TBA and TMST, causing its concentration in aqueous solution to decrease, is confirmed by the results of PL. The generation of reactive oxygen species is detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It is found that the photocurrent density and the PGO effect increase in the case with modified fullerene. The experimental results show that this heterogeneous catalyst has a degradation of 88.43% achieved through visible light irradiation. The product for the degradation of NH3 is identified as N2, but not NO2- or NO3-.

Preparation and Photonic Properties of CNT/TiO2 Composites Derived from MWCNT and Organic Titanium Compounds

  • Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.234-241
    • /
    • 2009
  • In this study, CNT/$TiO_2$ composites derived from various titanium alkoxides and multiwalled carbon nanotubes (MWCNTs) were synthesized and characterized. Surface areas and pore volumes of the CNT/$TiO_2$ samples showed catastrophic decrease due to deposition of titanium compounds. Scanning electron microscopy (SEM) results indicated that the MWCNTs were homogenously decorated and well-dispersed onto/into the composites without apparent agglomeration of $TiO_2$ particles. In the X-ray diffraction (XRD) patterns, peaks of anatase and rutile phase were observed. The energy dispersive X-ray spectroscopy (EDX) spectra revealed the presence of major elements such as C and O with strong Ti peaks. According to the photocatalytic results, MB removal by a treatment with CNT/$TiO_2$ composites seems to have an excellent removal effect as order of CTIP, CTNB and CTPP composites due to a photolysis of the supported $TiO_2$, the radical reaction and the adsorptivity and absorptivity of the MWCNTs.

A Review of Photocatalytic Treatment for Various Air Pollutants

  • Reddy, P. Venkata Laxma;Kim, Ki-Hyun;Kim, Yong-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.3
    • /
    • pp.181-188
    • /
    • 2011
  • Photocatalysis is a photochemical catalytic reaction which is a highly promising tool for the environmental cleanup process. It is very effective in treatment of environmental pollutants by its unique redox property. It has wide applications in the treatment of atmospheric pollutants (e.g., nitrogen dioxide, trichloroethylene, volatile organics, hydrogen sulfide, benzene, etc) through oxidative removal and by disinfection (aeromicro flora). In this research, the fundamental aspects of photocatalysis are described with respect to the composition of catalysts, experimental conditions (e.g., temperature, duration, etc), and interfering factors (e.g., catalyst deactivation).

A Study on the Decomposition of Water Soluble Dyes by UV/TiO2 (UV/TiO2에 의한 수용성 염료의 분해에 관한 연구)

  • 정갑섭
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.319-324
    • /
    • 2003
  • The characteristics of photocatalytic decomposition of dye waste water by titanium dioxide was studied in a batch reactor under constant strength of ultra-violet ray. The decomposition rate of methyl orange by TiO$_2$ was pseudo-first order, anatase type TiO$_2$ was more effective than rutile type below the dosage of 5g. The decomposition rate was increased with decreasing initial pH, increasing reaction temperature and oxidant concentration. The decomposition rate of water soluble dyes was decreased in order of rhodamine B>eosin Y>methyl orange.

판상형 산화아연의 합성 및 응용에 관한 연구 동향

  • Jang, Ui-Sun
    • Ceramist
    • /
    • v.20 no.4
    • /
    • pp.55-73
    • /
    • 2017
  • As one of the most versatile semiconductors, zinc oxide (ZnO) with one-dimensional (1-D) nanostructures has been significantly developed for the application of ultraviolet (UV) lasers, photochemical sensors, photocatalysts, and so on. Such 1-D nanowires could be easily achieved due to the anisotropic growth rate along the [0001] direction. However, such typical growth habit leads to decrease the surface area of the (0001) plane, which plays a central role in not only UV lasing action but also photocatalytic reaction. This fact lead us to develop ZnO crystal with enhanced polar surface area through crystal growth control. The purpose of this review is to provide readers a simple route to plate-type ZnO crystal with highly enhanced polar surfaces and their applications for UV-laser, photocatalyst, and antibacterial agents. In addition, we will highlight the recent study on pilot-scale synthesis of plate-type ZnO crystal for industrial applications.

Photoinduced Electron Transfer Reactions of Aryl Benzyl Sulfides Promoted by 2,4,6-Triphenylpyrilium Tetrafluoroborate (TP+BF4-)

  • Memarian, Hamid Reza;Ira, Mohammadpoor Baltork;Bahrami, Kiumars
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.106-110
    • /
    • 2006
  • Photocatalytic electron transfer reactions of aryl benzyl sulfides using 2,4,6 triphenylpyrilium tetrafluoroborate ($TP^+BF_4^-$) resulted in the oxidation of these sulfides to the corresponding sulfoxides and also in most cases in the C-S bond cleavage of them along with formation of aromatic aldehydes. In these reactions, the formation of sulfide radical cation has been proposed, which undergoes either oxidation to the corresponding sulfoxide or C-S bond cleavage to the formation of aromatic aldehydes. The further oxidation of sulfoxides to sulfones has not been observed. The influence of substrate structures on the reaction pathways as well as the role of $O_2$ in this respect is discussed.

Photocatalytic Oxidation of Han River Humic Substances and Change of Their Characteristics by $TiO_2/UV$ in a Rotating Photoreactor ($TiO_2/UV$ 회전반응기를 이용한 한강 휴믹물질의 광촉매산화 처리 및 특성 변화)

  • Shin, Jee-Won;Kim, Hyun-Chul;Han, Ihn-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1129-1135
    • /
    • 2005
  • In this study. the applicability of a rotating reactor for the oxidative removal of aqueous humic substances extracted from the Han River in Seoul, Korea was investigated. As air blowing for proper mixing of $TiO_2$ photocatalyst could inhibit UV-irradiation between a UV lamp and photocatalyst by air bubbles, a rotating reactor with some baffles was used for better UV-irradiation effect in this study. Han River humic substances are different from the other commercial humic substances(e.g., from Aldrich and International Humic Substance Society). Their characteristics were investigated with structural and spectroscopic analyses using FT-IR(Fourier transform-infrared), and $^{13}C$-NMR (nuclear magnetic resonance). The humic substances were extracted by XAD-7HP and treated with $TiO_2$-coated hollow beads under UV-A and UV-C irradiation in order to solve problems of separation and recovery of photocatalyst after reaction. At approximately 5 mg/L of initial TOC concentration, pH 3 and $2.0\;g-TiO_2/L$ dose, photocatalytic oxidation of Han River humic substances showed the optimum removal efficiency. Also, UV-C and UV-A lamps showed similar TOC removal efficiency. However, under UV-C irradiation, Han River humic substances were degraded to smaller compounds and increased the proportion of low molecular weight fractions compared to UV-A.

Killing Effects of $UV-TiO_2$ Photocatalytic System on Microorganisms ($UV-TiO_2$ 광촉매 반응기에 의한 미생물의 살균효과)

  • 김중곤;신용국;이영상;김용호;김시욱
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.130-136
    • /
    • 2001
  • The killing effects of two types(one-phase reactor and two-phase reactor) of UV-TiO$_2$photocatalytic system on the microorganisms have been studied. The UV-lamp which emits maximum 39 watts at 254 nm was prepared in these system. Three types of $TiO_2$ coating method were adopted. One type is thin film coated form on the quartz tube in the reactor and another one is surface rough coated form on the glass bead. The other one is $TiO_2$-mixed alginate bead form. UV irradiation was carried out for 1 min. In case of one phase reactor, the bactericidal efficiencies of E. coli by $TiO_2$-coated quartz tube and $TiO_2$-coated glass bead were 63.2% and 89.9%, respectively. In the air-bubbling system, the bactericidal efficiency was 95%, however, the efficiency decreased to 90.6% in the non-bubbling system. In the $TiO_2$-mixed alginate bead system, bactericidal efficiency was 86%. When $H_2O$$_2$ was treated (10, 15, 20, and 25 mg/ι) to the $TiO_2$-coated glass bead reactor, bactericidal efficiency significantly increased according to the concentration of $H_2$$O_2$. Two phase reactor showed more elevated efficiency. E. coli was more sensitive to the reaction than S. cerevisiae.

  • PDF

A Comparative Study on Degradation of BTEX Vapor by O3/UV, TiO2/UV, and O3/TiO2/UV System with Operating Conditions (운전조건에 따른 O3/UV, TiO2/UV 및 O3/TiO2/UV 시스템의 BTEX 증기처리에 관한 비교 연구)

  • Kim, Kyoung-Jin;Park, Ok-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.1
    • /
    • pp.91-99
    • /
    • 2008
  • A multilayer tower-type photoreactor, in which $TiO_2$-coated glass-tubes were installed, was used to measure the vapor-phase BTEX removal efficiencies by ozone oxidation ($O_3$/UV), photocatalytic oxidation ($TiO_2$/UV) and the combination of ozone and photocatalytic oxidation ($O_3/TiO_2$/UV) process, respectively. The experiments were conducted under various relative humidities, temperatures, ozone concentrations, gas flow rates and BTEX concentrations. As a result, the BTEX removal efficiency and the oxidation rate by $O_3/TiO_2$/UV system were highest, compared to $O_3$/UV and $TiO_2$/UV system. The $O_3/TiO_2$/UV system accelerated the low oxidation rate of low-concentration organic compounds and removed organic compounds to a large extent in a fixed volume of reactor in a short time. Therefore, $O_3/TiO_2$/UV system as a superimposed oxidation technology was developed to efficiently and economically treat refractory VOCs. Also, this study demonstrated feasibility of a technology to scale up a photoreactor from lab-scale to pilot-scale, which uses (i) a separated light-source chamber and a light distribution system, (ii) catalyst fixing to glass-tube media, and (iii) unit connection in series and/or parallel. The experimental results from $O_3/TiO_2$/UV system showed that (i) the highest BTEX removal efficiencies were obtained under relative humidity ranging from 50 to 55% and temperature ranging from 40 to $50^{\circ}C$, and (ii) the removal efficiencies linearly increased with ozone dosage and decreased with gas flow rate. When applying Langmuir-Hinshelwood model to $TiO_2$/UV and $O_3/TiO_2$/UV system, reaction rate constant for $O_3/TiO_2$/UV system was larger than that for $TiO_2$/UV system, however, it was found that adsorption constant for $O_3/TiO_2$/UV system was smaller than that for $TiO_2$/UV system due to competitive adsorption between organics and ozone.