판상형 산화아연의 합성 및 응용에 관한 연구 동향

  • 장의순 (금오공과대학교 응용화학과)
  • Published : 2017.12.30

Abstract

As one of the most versatile semiconductors, zinc oxide (ZnO) with one-dimensional (1-D) nanostructures has been significantly developed for the application of ultraviolet (UV) lasers, photochemical sensors, photocatalysts, and so on. Such 1-D nanowires could be easily achieved due to the anisotropic growth rate along the [0001] direction. However, such typical growth habit leads to decrease the surface area of the (0001) plane, which plays a central role in not only UV lasing action but also photocatalytic reaction. This fact lead us to develop ZnO crystal with enhanced polar surface area through crystal growth control. The purpose of this review is to provide readers a simple route to plate-type ZnO crystal with highly enhanced polar surfaces and their applications for UV-laser, photocatalyst, and antibacterial agents. In addition, we will highlight the recent study on pilot-scale synthesis of plate-type ZnO crystal for industrial applications.

Keywords

References

  1. G. A. O. Oprea, E. Andronescu, D. Ficai, A. Ficai, F. N. Oktar, and M. Yetmez, "ZnO Applications and Challenges,"Curr. Org. Chem., 18 [2] 192-203 (2014). https://doi.org/10.2174/13852728113176660143
  2. O. Bondarenko, K. Juganson, A. Ivask, K. Kasemets, M. Mortimer, and A. Kahru, "Toxicity of Ag, CuO and ZnO Nanoparticles to Selected Environmentally Relevant Test Organisms and Mammalian Cells In Vitro: a Critical Review," Arch. Toxicol., 87 [7] 1181- 1200 (2013). https://doi.org/10.1007/s00204-013-1079-4
  3. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, "Room- Temperature Ultraviolet Nanowire Nanolasers," Science, 292 [8] 1897-99 (2001). https://doi.org/10.1126/science.1060367
  4. D. C. Reynolds, D. C. Look, B. Jogai, and T. C. Collins, "Polarition and Free-Excition-Like Photoluminescence in ZnO", Appl. Phys. Lett., 79 [23] 3794-96 (2001). https://doi.org/10.1063/1.1412435
  5. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, "Condensation of Semiconductor Microcavity Exciton Polaritons", Science, 298 [4] 199- 202 (2002). https://doi.org/10.1126/science.1074464
  6. M. Zamfirescu, A. Kavokin, B. Gil, and G. Malpuech, "ZnO as a Material Mostly Adapted for Realization of Room-Temperature Polariton Lasers", Phys. Stat. Sol. (a), 195 [3] 563-67 (2003). https://doi.org/10.1002/pssa.200306153
  7. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, "Optically Pumped Lasing of ZnO at Room Temperature", Appl. Phys. Lett., 79 [23] 3794-96 (2001). https://doi.org/10.1063/1.1412435
  8. J.-H. Choy, E.-S. Jang, J.-H. Won, J.-H. Chung, D.-J. Jang, Y.-W. Kim, "Hydrothermal Route to ZnO Nanocoral Reefs and Nanofibers", Appl. Phys. Lett., 84 [2] 287-89 (2004). https://doi.org/10.1063/1.1639514
  9. R. A. Laudise, and A. A. Ballman, "Hydrothermal Synthesis of Zinc Oxide and Zinc Sulfide," J. Phys. Chem., 64 [5] 688-91 (1960). https://doi.org/10.1021/j100834a511
  10. R. S. Wagner, and W. C. Ellis, "Vapor-Liquid-Solid Mechanism of Single Crystal Growth," Appl. Phys. Lett., 70 [17] 2230-32 (1997). https://doi.org/10.1063/1.118824
  11. Y. Wu, and P. Yang, "Direct Observation of Vapor- Liquid-Solid Nanowire Growth", J. Am. Chem. Soc., 123 [13] 3165-66 (2001). https://doi.org/10.1021/ja0059084
  12. Y. Wu, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, "One-Dimensional Nanostructures: Synthesis, Characterization, and Applications", Adv. Mater., 15 [5] 353-89 (2003). https://doi.org/10.1002/adma.200390087
  13. A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath, T. S. Turner, G. Thornton, and N. M. Harrison, "Stability of Polar Oxide Surfaces", Phys. Rev. Lett., 86 3811-14 (2001). https://doi.org/10.1103/PhysRevLett.86.3811
  14. J. I. Sohn, W. -K. Hong, S. Lee, S. Lee, J. Ku, Y. J. Park, J. Hong, S. Hwang, K. H. Park, J. H. Warner, S. Cha, and J. M. Kim, "Surface Energy-Mediated Construction of Anisotropic Semiconductor Wires with Selective Crystallographic Polarity", Scientific Reports, 4 5680 (2014).
  15. M. M. Versteegh, D. Vanmaekelbergh, and J. I. Dijkhuis, "Room-Temperature Laser Emission of ZnO Nanowires Explained by Many-Body Theory", Phys. Rev. Lett., 108 [15] 157402 (2012). https://doi.org/10.1103/PhysRevLett.108.157402
  16. Y. Dai, Y. Zhang, Q. K. Li, and C. W. Nan, "Synthesis and optical properties of tetrapod-like zinc oxide nanorods", Chem. Phys. Lett., 358 [1-2] 83-6 (2002). https://doi.org/10.1016/S0009-2614(02)00582-1
  17. Z. Chen, Z. Shan, M. S. Cao, L. Lu, and S. X. Mao, "Zinc Oxide Nanotetrapods", Nanotechnology, 15 [3] 365 (2004). https://doi.org/10.1088/0957-4484/15/3/023
  18. Z. W. Pan, Z. R. Dai, and Z. L. Wang, "Nanobelts of Semiconducting Oxides", Science, 291 [9] 1947-49 (2001). https://doi.org/10.1126/science.1058120
  19. Z. R. Dai, Z. W. Pan, and Z. L. Wang, "Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation", Adv. Funct. Mater., 13 [1] 9-24 (2003). https://doi.org/10.1002/adfm.200390013
  20. X. Y. Kong, and Z. L. Wang, "Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts", Nano Lett., 3 [12] 1625-31 (2003). https://doi.org/10.1021/nl034463p
  21. X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, "Single-Crystal Nanorings Formed by Epitaxial Self- Coiling of Polar Nanobelts", Science, 303 [27] 1348-51 (2004). https://doi.org/10.1126/science.1092356
  22. J. -H. Choy, E. -S. Jang, J. -H. Won, J. -H. Chung, D. -J. Jang, and Y. -W. Kim, "Soft Solution Route to Directionally Grown ZnO Nanorod Arrays on Si Wafer; Room-Temperature Ultraviolet Laser", Adv. Mater., 15 [22] 1911-14 (2003). https://doi.org/10.1002/adma.200305327
  23. E. -S. Jang, X. Chen, J. -H. Won, J. -H. Chung, D. -J. Jang, Y. -W. Kim, and J. -H. Choy, "Soft- Solution Route to ZnO Nanowall Array with Low Threshold Power Density", Appl. Phys. Lett., 97 043109 (2010). https://doi.org/10.1063/1.3466910
  24. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, and M. J. Mcdermott, "Biomimetic Arrays of Oriented Helical ZnO Nanorods and Columns", J. Am. Chem. Soc., 124 12954-55 (2002). https://doi.org/10.1021/ja0279545
  25. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering-Gallery Mode Microdisk Lasers", Appl. Phys. Lett., 60 [3] 289-91 (1992). https://doi.org/10.1063/1.106688
  26. R. G. Nazmitdinov, K. N. Pichugin, I. Rotter, and P. Seba, Phys. Rev. E, 64 056214 (2001). https://doi.org/10.1103/PhysRevE.64.056214
  27. A. C. Tamboli, E. D. Haberer, R. Sharma, K. H. Lee, S. Nakamura, and E. L. Hu, "Room-Temperature Continuous-Wave Lasing in GaN/InGaN Microdisks", Nature Photonics, 1 61-64 (2007). https://doi.org/10.1038/nphoton.2006.52
  28. C. Kim, Y. -J. Kim, E. -S. Jang, G. -C. Yi, and H. H. Kim, "Whispering-Gallery-Modelike-Enhanced Emission from ZnO Nanodisk", Appl. Phys. Lett., 88 093104 (2006). https://doi.org/10.1063/1.2174122
  29. W. Li, S. Gao, L. Li, S. Jiao, Q. Yu, H. Li, J. Wang, Q. Yu, Y. Zhang, and D. Wang, "A Facile Solution Synthesis of ZnO Nanoplates on Al Substrate at Room Temperature", Mater. Lett., 185 161-64 (2016). https://doi.org/10.1016/j.matlet.2016.08.021
  30. P. W. Tasker, "The Stability of Ionic Crystal Surfaces", J. Phys. C: Solid State Phys., 12 4977-84 (1979). https://doi.org/10.1088/0022-3719/12/22/036
  31. O. Dulub, U. Kiebold, and G. Kresse, "Novel Stabilization Mechanism on Polar Surfaces: ZnO(0001)-Zn", Phys. Rev. Lett., 90 [1] 016102 (2003). https://doi.org/10.1103/PhysRevLett.90.016102
  32. V. Staemmler, K. Fink, B. Meyer, D. Marx, M. Kunat, S. G. Girol, U. Burghaus, and C. Woll, "Stabilization of Polar ZnO Surfaces: Validating Microscopic Models by Using CO as a Probe Molecule", Phys. Rev. Lett., 90 [10] 106102 (2003). https://doi.org/10.1103/PhysRevLett.90.106102
  33. E.-S. Jang, J.-H. Won, S.-J. Hwang, and J.-H. Choy, "Fine Tuning of the Face Orientation of ZnO Crystals to Optimize Their Photocatalytic Activity", Adv. Mater., 18 3309-12 (2006). https://doi.org/10.1002/adma.200601455
  34. E.-S. Jang, J.-H. Won, Y.-W. Kim, Z. Cheng, and J.-H. Choy, "Dynamic Transition between Zn-HDS and ZnO; Growth and Dissolving Mechanism of Dumbbell-like ZnO Bipod Crystal", CrystEngComm, 13 546-52 (2011). https://doi.org/10.1039/C003458D
  35. J. H. Zeng, B. B. Jin, and Y. F. Wang, "Facet Enhanced Photocatalytic Effect with Uniform Single- Crystalline Zinc Oxide Nanodisks", Chem. Phys. Lett., 472 90-95 (2009). https://doi.org/10.1016/j.cplett.2009.02.082
  36. R. Boppella, K. Anjaneyulu, P. Basak, and S. V. Manorama, "Facile Synthesis of Face Oriented ZnO Crystals: Tunable Polar Facets and Shape Induced Enhanced Photocatalytic Performance", J. Phys. Chem. C, 117 4597-4605 (2013). https://doi.org/10.1021/jp311443s
  37. M. Huang, Y. Yan, W. Feng, S. Weng, Z. Zheng, X. Fu, and P. Liu, "Controllable Tuning Various Ratios of ZnO Polar Facets by Crystal Seed-Assisted Growth and Their Photocatalytic Activity", Cryst. Grwoth Des., 14 2179-86 (2014). https://doi.org/10.1021/cg401676r
  38. G. Tang, S. Tian, Z. Zhou, Y. Wen, A. Pang, Y. Zhang, D. Zeng, H. Li, B. Shan, and C. Xie, "ZnO Micro/Nanocrystals with Tunable Exposed (0001) Facets for Enhanced Catalytic Activity on the Thermal Decomposition of Ammonium Perchlorate", J. Phys. Chem. C, 118 11833-41 (2014). https://doi.org/10.1021/jp503510x
  39. Y. Chen, H. Zhao, B. Liu, and H. Yang, "Charge Separation between Wurtzite ZnO Polar {0001} Surfaces and Their Enhanced Photocatalytic Activity", Appl. Catalysis B: Environmental, 163 189-97 (2015). https://doi.org/10.1016/j.apcatb.2014.07.044
  40. Y. Zhang, C. Liu, F. Gong, B. Jiu, and F. Li, "Large Scale Synthesis of Hexagonal Simonkolleit Nanosheets for ZnO Gas Sensors with Enhanced Performances", Mater. Lett., 186 7-11 (2017). https://doi.org/10.1016/j.matlet.2016.09.080
  41. E. D. Brown, and G. D. Wright, "New Targets and Screening Approaches in Antimicrobial Drug Discovery", Chem. Rev., 105 759-74 (2005). https://doi.org/10.1021/cr030116o
  42. H.-J. Yang, H.-J. Kim, J. Yu, E. Lee, Y.-H. Jung, H.-Y. Kim, J.-H. Seo, G.-Y. Kwon, J.-H. Park, J. Gwack, S.-K. Youn, J.-W. Kwon, B.-Y. Jun, K. W. Kim, K. Ahn, S.-Y. Lee, J.-D. Park, J. -W. Kwon, B.-J. Kim, M.-S. Lee, K.-H. Do, S. -J. Jang, B.-Y. Pyun, and S. J. Hong, "Inhalation Toxicity of Humidifier Disinfectants as a Risk Factor of Children's Interstitial Lung Disease in Korea: A Case-Control Study", PLOS ONE, 8 [6] e64430 (2013). https://doi.org/10.1371/journal.pone.0064430
  43. H. R. Kim, K. Lee, C. W. Park, J. A. Song, D. Y. Shin, Y. J. Park, and K. H. Chung, "Polyhexamethylene guanidine phosphate aerosol particles induce pulmonary inflammatory and fibrotic responses", Archives of Toxicology, 90 [3] 617-32 (2016). https://doi.org/10.1007/s00204-015-1486-9
  44. R. Brayner, R. F-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, and G. Fievet, "Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium", Nano Lett., 6 [4] 866-70 (2006). https://doi.org/10.1021/nl052326h
  45. G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, and A. Gedanken, "Enhanced Antibacterial Activity of Nanocrystalline ZnO Due to Increased ROS-Mediated Cell Injury" Adv. Funct. Mater., 19 [6] 842-52 (2009). https://doi.org/10.1002/adfm.200801081
  46. K. Ali, S. Dwivedi, A. Azam, Q. Saquib, M. S. Al-Said, A. A. Alkhedhairy, and J. Musarrat, "Aloe Vera Extract Functionalized Zinc Oxide Nanoparticles as Nanoantibiotics Against Multi-Drug Resistant Clinical Bacterial Isolates", J Colloid Interface Sci., 472 [15] 145-56 (2016). https://doi.org/10.1016/j.jcis.2016.03.021
  47. S. Dwivedi, R. Wahab, F. Khan, Y. K. Mishra, J. Musarrat, and A. A. Al-Khedhairy, "Reactive Oxygen Species Mediated Bacterial Biofilm Inhibition via Zinc Oxide Nanoparticles and Their Statistical Determination", PLOS ONE, 9 e111289 (2014). https://doi.org/10.1371/journal.pone.0111289
  48. A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, S. S. Habib, and A. Memic, "Antimicrobial Activity of Metal Oxide Nanoparticles against Gram-Positive and Gram-Negative Bacteria: a Comparative Study", Int. J. Nanomed., 7 6003-09 (2012).
  49. S. A. Ansari, Q. Husain, S. Qayyum, and A. Azam, "Designing and Surface Modification of Zinc Oxide Nanoparticles for Biomedical Applications", Food & Chem. Toxicology, 49 [9] 2107-15 (2011). https://doi.org/10.1016/j.fct.2011.05.025
  50. M. A. Ansari, H. M. Khan, A. A. Khan, A. Sultan, and A. Azam, "Synthesis and Characterization of the Antibacterial Potential of ZnO Nanoparticles against Extended- Spectrum ${\beta}$-Lactamases-Producing Escherichia coli and Klebsiella pneumoniae Isolated from a Tertiary Care Hospital of North India", Appl. Microbiol & Biotech., 94 [2] 467-77 (2012). https://doi.org/10.1007/s00253-011-3733-1
  51. Y. Li, W. Zhang, J. Niu, and Y. Chen, "Mechanism of Photogenerated Reactive Oxygen Species and Correlation with the Antibacterial Properties of Engineered Metal-Oxide Nanoparticles", ACS Nano, 6 [6] 5164-73 (2012). https://doi.org/10.1021/nn300934k
  52. N. Padmavathy, and R. Vijayaraghavan, "Enhanced Bioactivity of ZnO Nanoparticles-an Antimicrobial Study", Sci. Technol. Adv. Mater., 9 [3] 035004 (2008). https://doi.org/10.1088/1468-6996/9/3/035004
  53. A. B. Djurisic, Y. H. Leung, A. M. C. Ng, X. Y. Xu, P. K. H. Lee, N. Degger, and R. S. S. Wu, "Toxicity of Metal Oxide Nanoparticles: Mechanisms, Characterization, and Avoiding Experimental Artefacts", Small, 11 [1] 26-44 (2015). https://doi.org/10.1002/smll.201303947
  54. M. J. Hajipour, K. M. Fromm, A. A. Ashkarran, D. J. D. Aberasturi, I. R. D. Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi, "Antibacterial Properties of Nanoparticles", Trends Biotech., 30 [10] 499-511 (2012). https://doi.org/10.1016/j.tibtech.2012.06.004
  55. K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, and H. Sugimoto, "Preparation of Zinc Oxide Ceramics with a Sustainable Antibacterial Activity under Dark conditions", Ceramics Inter., 36 [2] 497-506 (2010). https://doi.org/10.1016/j.ceramint.2009.09.026
  56. X. Xu, D. Chen, Z. Yi, M. Jiang, L. Wang, Z. Zhou, X. Fan, Y. Wang, and D. Hui, "Antimicrobial Mechanism Based on $H_2O_2$ Generation at Oxygen Vacancies in ZnO Crystals", Langmuir, 29 [18] 5573- 80 (2013). https://doi.org/10.1021/la400378t
  57. V. L. Prasanna, and R. Vijayaraghavan, "Insight into the Mechanism of Antibacterial Activity of ZnO: Surface Defects Mediated Reactive Oxygen Species Even in the Dark", Langmuir, 31 [33] 9155-9162 (2015). https://doi.org/10.1021/acs.langmuir.5b02266
  58. M. Li, L. Zhu, and D. Lin, "Toxicity of ZnO Nanoparticles to Escherichia coli: Mechanism and the Influence of Medium Components", Environ. Sci. Technol., 45 [5] 1977-83 (2011). https://doi.org/10.1021/es102624t
  59. Y. W. Wang, A. Cao, Y. Jiang, X. Zhang, J. H. Liu, Y. Liu, and H. Wang, "Superior Antibacterial Activity of Zinc Oxide/Graphene Oxide Composites Originating from High Zinc Concentration Localized around Bacteria", ACS Appl. Mater. Interfaces, 6 [4] 2791-98 (2014). https://doi.org/10.1021/am4053317
  60. K. R. Raghupathi, R. T. Koodali, and A. C. Manna, "Size-Dependent Bacterial Growth Inhibition and Mechanism of Antibacterial Activity of Zinc Oxide Nanoparticles", Langmuir, 27 [7] 4020-4028 (2011). https://doi.org/10.1021/la104825u
  61. K. H. Tam, A. B. Djurišić, C. M. N. Chan, Y. Y. Xi, C. W. Tse, Y. H. Leung, W. K. Chan, F. C. C. Leung, and D. W. T. Au, "Antibacterial Activity of ZnO Nanorods Prepared by a Hydrothermal Method", Thin Solid Films, 516 [18] 6167-74 (2008). https://doi.org/10.1016/j.tsf.2007.11.081
  62. Y. Liu, L. He, A. Mustapha, H. Li, Z. Q. Hu, and M. Lin, "Antibacterial Activities of Zinc Oxide Nanoparticles against Escherichia coli O157:H7", J. Appl. Microbiology, 107 [4] 1193-1201 (2009). https://doi.org/10.1111/j.1365-2672.2009.04303.x
  63. A. Joe, S.-H. Park, K.-D. Shim, D.-J. Kim, K. -H. Jhee, H.-W. Lee, C.-H. Heo, H.-M. Kim, and E.-S. Jang, "Antibacterial Mechanism of ZnO Nanoparticles under Dark conditions", J. Ind. & Eng. Chem., 45 430-39 (2017). https://doi.org/10.1016/j.jiec.2016.10.013
  64. C. H. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, H. K. A Cho, "A Comparative Analysis of Deep Level Emission in ZnO Layers Deposited by Various Methods", J. Appl. Phys., 105 013502 (2009). https://doi.org/10.1063/1.3054175
  65. L. Spanhel, and M. A. Anderson, "Semiconductor Clusters in the Sol-Gel Process: Quantized Aggregation, Gelation, and Crystal Growth in Concentrated Zinc Oxide Colloids", J. Am. Chem. Soc., 113 [8] 2826-33 (1991). https://doi.org/10.1021/ja00008a004
  66. P. S. Hale, L. M. Maddox, J. G. Shapter, N. H. Voelcker, M. J. Ford, and E. R. Waclawik, "Growth Kinetics and Modeling of ZnO Nanoparticles", J. Chem. Edu., 82 [5] 775-78 (2005). https://doi.org/10.1021/ed082p775
  67. D.-J. Kim, B.-M. Kim, A. Joe, K.-D. Shim, H. -W. Han, G.-H. Noh, and E.-S. Jang, "Large- Scale Synthesis of Plate-Type ZnO Crystal with High Photocatalytic Activity", J. Kor. Chem. Soc., 59 [2] 148-55 (2015). https://doi.org/10.5012/jkcs.2015.59.2.148