• Title/Summary/Keyword: Photocatalytic film

Search Result 105, Processing Time 0.031 seconds

The Photocatalytic Reaction of the Thin Film TiO2-Sr4Al14O25 Phosphors for Benzene Gas (박막 산화티타늄과 Sr4Al14O25 축광체를 조합한 복합소재의 벤젠가스에 대한 광촉매 반응)

  • Kim, Seung-Woo;Kim, Jung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.50-56
    • /
    • 2013
  • Phosphorescent materials coated with titanium dioxide were fabricated and photocatalytic reactions between these materials and VOCs gases were examined. A thin film (approx. 100 nm) of nanosized $TiO_2$ was deposited on the $Sr_4Al_{14}O_{25}$ : $Eu^{2+}$, $Dy^{3+}$, $Ag^+$ phosphor using low-pressure chemical vapor deposition (LPCVD). The characteristics of the photocatalytic reaction were examined in terms of the decomposition of benzene gas using a gas chromatography (GC) system under ultraviolet (${\lambda}$ = 365 nm) and visible light (${\lambda}$ > 420 nm) irradiation. $TiO_2$-coated $Sr_4Al_{14}O_{25}$ : $Eu^{2+}$, $Dy^{3+}$, $Ag^+$ phosphor showed different photocatalytic behavior compared with pure $TiO_2$. $TiO_2$-coated phosphorescent materials showed a much faster photocatalytic decomposition of benzene gas under visible irradiation compared to the pure $TiO_2$ for which the result was practically negligible. This suggests that the extension of the absorption wavelength to visible light occurred through energy band bending by a heterojunction at the interface of the $Sr_4Al_{14}O_{25}-TiO_2$ composite. Also, the $Sr_4Al_{14}O_{25}-TiO_2$ composite showed the photocatalytic decomposition of benzene in darkness due to the photon light emitted from the $Sr_4Al_{14}O_{25}$ phosphors.

Fabrication of Photocatalytic $TiO_2$ Thin Film Using Aerosol Deposition Method (Aerosol Deposition 법을 이용한 광촉매 $TiO_2$ 박막 제조)

  • Choi Byung-Kyu;Min Seok-Hong;Kim Jong-Oh;Kang Kyong-Tae;Choi Won-Youl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.55-59
    • /
    • 2004
  • We fabricates the $TiO_2$ thin film from anatase phase $TiO_2$ powder having good photocatalytic property using aerosol deposition method at room temperature. Aerosol deposition method, which sprays an aerosol powder with ultrasonic velocity and deposits a thin film on substrate at low temperature, has the advantages of low thermal stress and low cost. To fabricate the $TiO_2$ thin film, the aerosol bath pressure and chamber pressure were 500 torr and 0.4 torr, respectively. The difference of aerosol bath pressure and chamber pressure accelerated the $TiO_2$ nano powder to ultrasonic velocity through the nozzle of $0.4 mm{\times}10 mm$ and $TiO_2$ thin film was finally formed. SS mesh with diameter of 50 mm was used as a substrate to apply the $TiO_2$ thin film to water quality purification. The raw powder was dehydrated for the good dispersion of $TiO_2$ powder. To suppress the formation of second particle, the powder was dispersed for 90 min in alcohol bath by ultrasonic treatment and desiccated. The grain size of $1 {\mu}m$ was observed in $TiO_2$ thin film deposited on SUS mesh by scanning electron microscopy (SEM). The anatase phase of $TiO_2$ thin film was also observed by X-ray diffraction (XRD) and the anatase phase of raw powder was nicely maintained after aerosol deposition. The results are applicable to water treatment filter having photocatalytic reaction.

  • PDF

Evaluation of Photocatalysis-Fixed Using Titanium for Advanced Wastewater Treatment (고도처리를 위한 금속티타늄 고정화광촉매기술평가)

  • Jang, Jun-Won;Min, Jee-Eun;Park, Jae-Woo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.815-818
    • /
    • 2008
  • Titanium was oxidized with oxygen plasma and calcinated with rapid thermal annealing for degradation of humic acid dissolved in water. Titania photocatalytic plate was produced by titanium surface oxidized with oxygen plasma by Plasma Enhanced Chemical Vapor Deposition(PECVD). RF-power and deposition condition is controlled under 100 W, 150 W, 300 W and 500 W. Treatment time was controlled by 5 min and 10 min. The film properties were evaluated by the X-ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD). From the experimental results, we found the optimal condition of titania film which exhibited good performance. Moreover photocatalytic capacity was about twice better than thermal spray titania film, and also as good as titania powder.

  • PDF

Preparation and antimicrobial assay of ceramic brackets coated with TiO2 thin films

  • Cao, Shuai;Wang, Ye;Cao, Lin;Wang, Yu;Lin, Bingpeng;Lan, Wei;Cao, Baocheng
    • The korean journal of orthodontics
    • /
    • v.46 no.3
    • /
    • pp.146-154
    • /
    • 2016
  • Objective: Different methods have been utilized to prevent enamel demineralization and other complications during orthodontic treatment. However, none of these methods can offer long-lasting and effective prevention of orthodontic complications or interventions after complications occur. Considering the photocatalytic effect of $TiO_2$ on organic compounds, we hoped to synthesize a novel bracket with a $TiO_2$ thin film to develop a photocatalytic antimicrobial effect. Methods: The sol-gel dip coating method was used to prepare $TiO_2$ thin films on ceramic bracket surfaces. Twenty groups of samples were composed according to the experimental parameters. Crystalline structure and surface morphology were characterized by X-ray diffraction and scanning electron microscopy, respectively; film thickness was examined with a surface ellipsometer. The photocatalytic properties under ultraviolet (UV) light irradiation were analyzed by evaluating the degradation ratio of methylene blue (MB) at a certain time. Antibacterial activities of selected thin films were also tested against Lactobacillus acidophilus and Candida albicans. Results: Films with 5 coating layers annealed at $700^{\circ}C$ showed the greatest photocatalytic activity in terms of MB decomposition under UV light irradiation. $TiO_2$ thin films with 5 coating layers annealed at $700^{\circ}C$ exhibited the greatest antimicrobial activity under UV-A light irradiation. Conclusions: These results provide promising guidance in prevention of demineralization by increasing antimicrobial activities of film coated brackets.

A Study on Photocatalytic Degradation Properties by Oxygen Partial Pressure for Tio2Thin Films Fabricated by DC Magnetron Sputtering (DC 마그네트론 스퍼터링법으로 제조된 Tio2 박막의 산소분압비에 따른 광분해 특성에 관한 연구)

  • Jeong, W.J.;Park, J.Y.;Park, G.C.
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.3
    • /
    • pp.226-230
    • /
    • 2005
  • This paper describes the photocatalytic degradation properties by oxygen partial pressure for TiO$_2$ thin films fabricated by dc magnetron reactive sputtering. And the structural, chemical, optical and photocatalytic properties were investigated at various analysis system. When TiO$_2$ thin film was made at deposition time of 120 min and Ar:O$_2$ ratio of 60:40, the best properties were obtained. That results were as follows: thickness; 360∼370 nm, gram size; 40 nm, optical energy band gap; 3.4 eV and Benzene conversion in the photocatalytic degradation; 11 %.

Interfaces of Stacking $TiO_2$ Thin Layers Affected on Photocatalytic Activities

  • Ju, Dong-U;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.189.1-189.1
    • /
    • 2013
  • Titanium dioxide (TiO2) is a wide bandgap semiconductor possessing photochemical stability and thus widely used for photocatalysis. However, enhancing photocatalytic efficiency is still a challenging issue. In general, the efficiency is affected by physio-chemical properties such as crystalline phase, crystallinity, exposed crystal facets, crystallite size, porosity, and surface/bulk defects. Here we propose an alternative approach to enhance the efficiency by studying interfaces between thin TiO2 layers to be stacked; that is, the interfacial phenomena influencing on the formation of porous structures, controlling crystallite sizes and crystallinity. To do so, multi-layered TiO2 thin films were fabricated by using a sol-gel method. Specifically, a single TiO2 thin layer with a thickness range of 20~40 nm was deposited on a silicon wafer and annealed at $600^{\circ}C$. The processing step was repeated up to 6 times. The resulting structures were characterized by conventional electron microscopes, and followed by carrying out photocatalytic performances. The multi-layered TiO2 thin films with enhancing photocatalytic efficiency can be readily applied for bio- and gas sensing devices.

  • PDF

Effective Wastewater Purification Using TiO2 Nanotubular Catalyst (TiO2 나노튜브 촉매를 이용한 효율적인 폐수처리)

  • Oh, Han-Jun;Choi, Hyung-Seon;Lee, Jong-Ho;Chi, Choong-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.91-98
    • /
    • 2009
  • The titania nanotubular layer for photocatalytic application was synthesized by anodization process in HF solution and the photocatalytic efficiencies of nanotubular film were evaluated by the decomposition rate of aniline blue. In order to facilitate the photocatalytic reaction, the electron acceptors such as potassium bromate, hydrogen peroxide and ammonium persulfate were added to aniline blue solution and the effects of electron acceptors on the dye degradation efficiency were evaluated. The results showed that the photocatalytic efficiency has markedly improved by adding the electron acceptors.

Removal of Humic Acid Using Titania Film with Oxygen Plasma and Rapid Thermal Annealing (산소플라즈마와 급속열처리에 의해 제조된 티타니아 박막의 휴믹산 제거)

  • Jang, Jun-Won;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.29-35
    • /
    • 2007
  • Titanium was oxidized with oxygen plasma and calcinated with rapid thermal annealing for degradation of humic acid dissolved in water. Titania photocatalytic plate was produced by titanium surface oxidized with oxygen plasma by Plasma Enhanced Chemical Vapor Deposition (PECVD). RF-power and deposition condition is controlled under 100 W, 150 W, 300 W and 500 W. Treatment time was controlled by 5 min and 10 min. The film properties were evaluated by the X-ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD). From the experimental results, we found the optimal condition of titania film which exhibited good performance. Moreover photocatalytic capacity was about twice better than thermal spray titania film, and also as good as titania powder.

Manufacturing and Characterization of N-doped TiO2 Photocatalytic Thin Film (N 도핑된 TiO2 광촉매 박막의 제조 및 특성분석)

  • Park, Sang-Won;Nam, Soo-Kyung;Heo, Jae-Eun
    • Journal of Environmental Science International
    • /
    • v.16 no.6
    • /
    • pp.683-688
    • /
    • 2007
  • In this study, N doped $TiO_2$ (TiO-N) thin film was prepared by DC magnetron sputtering method to show the photocatalytic activity in a visible range. Various gases (Ar, $O_2\;and\;N_2$) were used and Ti target was impressed by 1.2 kW -5.8 kW power range. The hysteresis of TiO-N thin film as a function of discharge voltage wasn't observed in 1.2 and 2.9kW of applied power. Cross sections and surfaces of thin films by FE-SEM were tiny and dense particle sizes of both films with normal cylindrical structures. XRD pattern of $TiO_2$ and TiO-N thin films was appeared by only anatase peak. Red shift in UV-Vis adsorption spectra was investigated TiO-N thin film. Photoactivity was evaluated by removal rate measurement of suncion yellow among reactive dyes. The photodegradation rate of $TiO_2$ thin film on visible radiation was shown little efficiency but TiO-N was about 18%.

Effect of Film Thickness on the Photocatalytic Performance of TiO2 Film Fabricated by Room Temperature Powder Spray in Vacuum Process (상온 진공 분말 분사공정에 의해 제조된 TiO2 광촉매 막의 두께변화에 따른 광촉매 특성)

  • Kim, Kun-Young;Ryu, Jung-Ho;Hahn, Byung-Dong;Choi, Jong-Jin;Yoon, Woon-Ha;Lee, Byoung-Kuk;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.839-844
    • /
    • 2008
  • $TiO_2$ is an environment-friendly semiconducting material, and it has photocatalytic and hydrophilic effect. There are a lot of reports on the photocatalytic characteristics of $TiO_2$, such as organic pollutants resolving, anti-bacterial, and self-purification material. In this paper, $TiO_2$ micron-sized powders were deposited on the glass by room temperature powder spray in vacuum process, so called aerosol deposition (AD), and nano-grained $TiO_2$ photocatalytic thin films were fabricated. The thickness of the films were controlled by changing the number of deposition cycle. Morphologies and characteristics of the AD-$TiO_2$ thin films were examined by SEM, TEM, XRD, and UV-Visible Spectrophotometer. As the thickness of $TiO_2$ films increased, surface roughness increased. By this increment, the reaction area between film and pollutant was enlarged, resulting in better photocatalytic property.