• Title/Summary/Keyword: Photocatalytic efficiency

Search Result 294, Processing Time 0.049 seconds

Technology Trend for Water Electrolysis Hydrogen Production by the Patent Analysis (특허분석에 의한 수전해 수소제조 기술동향)

  • Hwang, Gab-Jin;Kang, Kyung-Seok;Han, Hye-Jung;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.95-108
    • /
    • 2007
  • There are several methods for the hydrogen production such as steam reforming of natural gas, photocatalytic method, biological method, electrolysis and thermochemical method, etc. These days it has been widely studying for the hydrogen production method having low hydrogen production cost and high efficiency. In this paper, patents in the hydrogen production by water electrolysis were gathered and analyzed. The search range was limited in the open patents of USA(US), European Union(EP), Japan(JP), and Korea(KR) from 1996 to 2005. Patents were gathered by using key-words searching and filtered by filtering criteria. The trends of the patents was analyzed by the years, countries, companies, and technologies.

Preparation of Ag2Se-Graphene-TiO2 Nanocomposite and its Photocatalytic Degradation (Rh B)

  • Ali, Asghar;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.388-394
    • /
    • 2017
  • Here, utilizing rhodamine B (RhB) as standard color dye, we examined the photo degradation proficiency of $Ag_2Se-Graphene-TiO_2$ nanocomposites under visible light irradiation; samples were prepared by ultrasonication techniques and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopic investigation and UV-Vis absorbance spectra examination. Our outcomes demonstrate that the $Ag_2Se-G-TiO_2$ nanocomposite showed significant photodegradation efficiency as compared with those of $TiO_2-G$ and $Ag_2Se-G$, with around 85.2% of Rhodamine B (RhB) degraded after 180 min. It is concluded that the $Ag_2Se-G-TiO_2$ nanocomposite is a competent candidate for dye pollutants.

The Antibiotic Resistant Gene Pollutant Controls using Chlorine or Ozone disinfection (염소 또는 오존을 이용한 항생제 내성 유전오염물질 제어)

  • Kim, Sung-Pyo;Rhu, Dae-Whan;Oh, Jun-Sik;Cho, Yun-Chul
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.697-705
    • /
    • 2011
  • The aim of this study was to examine ozonation disinfection efficiency for Escherichia coli DH5alpha removal, containing the multi-resistance plasmid pB10 as well as chlorination disinfection efficiency. In addition, plasmid pB10 removal rates were estimated by ozonation and chlorination. The removal efficiency of pB10 via ozonation was about 2 to 4 times higher than chlorination. High removal efficiency of pB10 is likely due to OH radical produced during ozonation. These results suggest that integration of advanced oxidation process such as ozonation (or photocatalytic oxidation) with conventional disinfection such as chlorination may be needed for effective control of antibiotic resistant bacteria and genetic materials.

Preparation of $TiO_2-SiO_2$ by Sol-Gel Method and Their Photocatalytic Activities (졸-겔법에 의한 $TiO_2-SiO_2$합성 및 광촉매활성)

  • 류완호;양천희
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.101-107
    • /
    • 1999
  • $TiO_2$ and $xTiO_2-ySiO_2$ system photocatalysts were developed by sol-gel method based on the change of production parameters, and their structure of crystallization and the specific surface area was measured. Considering the efficiency of the ethanol decomposition using the catalyst, the conclusion was made as follows: 1) By means of X-ray analysis of $TiO_2$ powder that is obtained from water and Titanium alkoxide with various molar ratios, it is shown that structure of crystallization is a dominating structure and, on the other hand, the crystallization of rutile also partly exists. The specific surface area is at its maximum value at R=6, which is the molar ratio of water vs. alkoxide, whereas its value goes down as the molar ratio increases. In the reaction of using $TiO_2$ catalyst, the ethanol is decomposed into the extent of 15 ~30% in an hour and three hours are necessitated for 70% decomposition. 2) $TiO_2/SiO_2$ powder is developed from Titanium and Silicon alkoxide by a hetero-condensation process. The increase of SiO$_2$ contents causes the decrease of the degree of crystallization of the gel, whereas the specific surface area preferentially increases. In the decomposition reaction of the ethanol, the decomposition efficiency represents 25~60% in an hour. It is, however, examined that the efficiency inactively increases corresponding to the duration of reaction time. It is shown that more than 90% of ethanol is decomposed when reaction time is about three hours and the efficiency illustrates the maximum value for 60-$TiO_2/4O-SiO_2$ catalyst.

  • PDF

Air Purification of Smoking Booth Using Photocatalytic Process and Air Filter (광촉매공정과 필터를 이용한 흡연부스 공기정화연구)

  • Kim, Tae-Young;Cho, Yeong-Tae;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.433-438
    • /
    • 2016
  • The current study evaluated the air quality of the smoking booth equipped with the air purification system consisting of photocatalysts and air filters by measuring the concentrations of hazardous substances of tobacco smoke such as CO, HCHO, $CH_3CHO$, PM10 and PM2.5. To enhance the removal efficiency of hazardous substances, an infrared ray was exposed to improve the reactivity of OH radical generated from the photocatalyst toward environmental tobacco smoke (ETS) gas phase hazardous materials. It was found that the smoking booth with the air purification system improved the removal efficiency of hazardous substances containing formaldehyde by 85.2% compared to that of the smoking booth without any purification systems. In addition, the removal efficiency of the fine dust after treatment was enhanced up to 89.4%.

Synthesis and Characterization of MoS2/Graphene-TiO2 Ternary Photocatalysts for High-Efficiency Hydrogen Production under Visible Light

  • Zhang, Feng-Jun;Kong, Cui;Li, Xuan;Sun, Xian-Yang;Xie, Wen-Jie;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.284-290
    • /
    • 2019
  • Ternary MoS2/graphene (G)-TiO2 photocatalysts were prepared by a simple hydrothermal method. The morphology, phase structure, band gap, and catalytic properties of the prepared samples were investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, UV-vis spectrophotometry, and Brunauer-Emmett-Teller surface area measurement. The H2 production efficiency of the prepared catalysts was tested in methanol-water mixture under visible light. MoS2/G-TiO2 exhibited the highest activity for photocatalytic H2 production. For 5 wt.% and 1 wt.% MoS2 and graphene (5MT-1G), the production rate of H2 was as high as 1989 µmol-1h-1. The catalyst 5MT-1G showed H2 production activity that was ~ 11.3, 5.6, and 4.1 times higher than those of pure TiO2, 1GT, and 5MT, respectively. The unique structure and morphology of the MoS2/G-TiO2 photocatalyst contributed to its improved hydrogen production efficiency under visible light.

Fabrication of ZnO and TiO2 Nanocomposite Fibers and Their Photocatalytic Decomposition of Harmful Gases (ZnO와 TiO2 함유 복합나노섬유의 제조와 유해물질분해 성능 평가)

  • Hur, Yoon-Sun;Lee, Seung-Sin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.11
    • /
    • pp.1297-1308
    • /
    • 2011
  • This research investigates the application of ZnO (zinc oxide) nanoparticles and $TiO_2$ (titanium dioxide) nanoparticles to polypropylene nonwoven fabrics via an electrospinning technique for the development of textile materials that can decompose harmful gases. To fabricate uniform ZnO nanocomposite fibers, two types of ZnO nanoparticles were applied. Colloidal $TiO_2$ nanoparticles were chosen to fabricate $TiO_2$ nano- composite fibers. ZnO/poly(vinyl alcohol) (PVA) and $TiO_2$/PVA nanocomposite fibers were electrospun under a variety of conditions that include various feed rates, electric voltages, and capillary diameters. The morphology of electrospun nanocomposite fibers was examined with a field-emission scanning electron micro- scope and a transmission electron microscope. Decomposition efficiency of gaseous materials (formaldehyde, ammonia, toluene, benzene, nitrogen dioxide, sulfur dioxide) by nanocomposite fiber webs with 3wt% nano-particles (ZnO or $TiO_2$) and 7$g/m^2$ web area density was assessed. This study shows that ZnO nanoparticles in colloid were more suitable for fabricating nanocomposite fibers in which nanoparticles are evenly dispersed than in powder. A heat treatment was applied to water-soluble PVA nanofiber webs in order to stabilize the electrospun nanocomposite fibrous structure against dissolution in water. ZnO/PVA and $TiO_2$/PVA nanofiber webs exhibited a range of degradation efficiency for different types of gases. For nitrogen dioxide, the degradation efficiency was 92.2% for ZnO nanocomposite fiber web and 87% for $TiO_2$ nanocomposite fiber web after 20 hours of UV light irradiation. The results indicate that ZnO/PVA and $TiO_2$/PVA nano- composite fiber webs have possible uses in functional textiles that can decompose harmful gases.

A Study on the Possibility of Dye Wastewater Treatment of Electrical Photocatalytic System Using TiO2 nanotube plate (TiO2 nanotube plate를 이용한 전기적광촉매시스템의 염료폐수 처리 가능성 연구)

  • Lee, Yongho;Sun, Minghao;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.5
    • /
    • pp.418-424
    • /
    • 2019
  • In this study, $TiO_2$ nanotubes with different morphologies were prepared in the electrolyte consisting of ethylene glycol, ammonium fluoride($NH_4F$), and deionized water($H_2O$) by controlling the voltage and time in the anodization method. Thicknesses and pore sizes of these $TiO_2$ nanotubes were measured to interpret the relationship between anodization conditions and $TiO_2$ nanotube morphologies. Element contents in the $TiO_2$ nanotubes were detected for further analysis of $TiO_2$ nanotube characteristics. Photoelectrolyticdecolorization efficiencies of the $TiO_2$ nanotube plates with various morphologies were tested to clarify the morphology that a highly active $TiO_2$ nanotube plate should have. Influences of applied voltage in photoelectrolysis processes and sodium sulfate($Na_2SO_4$) concentration in wastewater on the decolorization efficiency were also studied. To save the equipment investment cost in photoelectrolysis methods, a two-photoelectrode system that uses the $TiO_2$ nanotube plates as photoanode and photocathode instead of adding other counter electrodes was studied. Compared with single-photoelectrode system that uses the $TiO_2$ nanotube plate as photoanode and titanium plate as cathode on the view of the treatment of dye wastewater containing different amounts of salt. As a result, a considerably suitable voltage was strictly needed for enhancing the photoelectrolyticdecolorization effect of the two-photoelectrode system but if salts exist in wastewater, an excellent increase in the decolorization efficiency can be obtained.

Synthesis and Characteristics of Pd/r-TiO2 Nanotube Arrays Hetrojunction Photocatalyst (Pd/r-TiO2 나노튜브 이종결합 광촉매의 합성과 특성)

  • Lee, Jong-Ho;Lee, Young-Ki;Kim, Young-Jig;Jang, Kyung-Wook;Oh, Han-Jun
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.14-22
    • /
    • 2022
  • To improve light absorption ability in the visible light region and the efficiency of the charge transfer reaction, Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst were synthesized. The reduced TiO2 nanotube photocatalyst was fabricated by anodic oxidation of Ti plate, followed by an electrochemical reduction process using applied cathodic potential. For TiO2 photocatalyst electrochemically reduced using an applied voltage of -1.3 V for 10 min, 38% of Ti4+ ions on TiO2 surface were converted to Ti3+ ion. The formation of Ti3+ species leads to the decrease in the band gap energy, resulting in an increase in the light absorption ability in the visible range. To obtain better photocatalytic efficiency, Pd nanoparticles were decorated through photoreduction process on the surface of reduced TiO2 nanotube photocatalyst (r10-TNT). The Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst exhibited enhanced photocurrent response, and high efficiency and rate constant for aniline blue degradation; these were ascribed to the synergistic effect of the new electronic state of the TiO2 band gap energy induced by formation of Ti3+ species on TiO2, and by improvement of the charge transfer reaction.

Evaluation on Removal Efficiency of Methylene Blue Using Nano-ZnO/Laponite/PVA Photocatalyzed Adsorption Ball (Nano-ZnO/Laponite/PVA 광촉매 흡착볼의 메틸렌블루 제거효율 평가)

  • Oh, Ju Hyun;Ahn, Hosang;Jang, Dae Gyu;Ahn, Chang Hyuk;Lee, Saeromi;Joo, Jin Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.636-642
    • /
    • 2013
  • In order to overcome drawbacks (i.e., filtration and recovery) of conventional powder type photocatalysts, nano-ZnO/Laponite/PVA (ZLP) photocatalyzed adsorption balls were developed by using in situ mixing of nanoscale ZnO as a photocatalyst, and Laponite as both adsorbent and supporting media in deionized water, followed by the poly vinyl alcohol polymerization with boric acid. The optimum mixing ratio of nano-ZnO:Laponite:PVA:deionized water was found to be 3:1:1:16 (by weight), and the mesh and film produced by PVA polymerization with boric acid might inhibit both swelling of Laponite and detachment of nanoscale ZnO from ZLP balls. Drying ZLP balls with microwave (600 watt) was found to produce ZLP balls with stable structure in water, and various sizes (55~500 ${\mu}m$) of pore were found to be distributed based on SEM and TEM results. In the initial period of reaction (i. e., 40 min), adsorption through ionic interaction between methylene blue and Laponite was the main removal mechanism. After the saturation of methylene blue to available adsorption sites for Laponite, the photocatalytic degradation of methylene blue occurred. The effective removal of methylene blue was attributed to adsorption and photocatalytic degradation. Based on the results from this study, synthesized ZLP photocatalyzed adsorption balls were expected to remove recalcitrant organic compounds effectively through both adsorption and photocatalytic degradation, and the risks of environmental receptors caused by detachment of nanoscale photocatalysts can be reduced.