• 제목/요약/키워드: Photocatalytic Effects

검색결과 142건 처리시간 0.026초

Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

  • Khan, Gulzar;Kim, Young Kwang;Choi, Sung Kyu;Han, Dong Suk;Abdel-Wahab, Ahmed;Park, Hyunwoong
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1137-1144
    • /
    • 2013
  • $TiO_2$ composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of $H_2$ production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher $H_2$ production as compared to bare $TiO_2$. Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of $TiO_2$ are discussed in terms of physicochemical properties of carbon materials, coupling states of $TiO_2$/carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors.

A Study on LCC Analysis by Floor Finishing Material to Reduce NOX in Urban Areas - Focusing on the photocatalytic pavement and cement pavement -

  • Bong, Jiwan;Lee, Chanhee;Choe, Suhyeon;Kim, Han Soo;Jeong, Kwangbok
    • 한국건설관리학회논문집
    • /
    • 제25권5호
    • /
    • pp.73-81
    • /
    • 2024
  • In South Korea, NOX emissions are a major concern, leading to acid rain and smog, harming both the atmosphere and human health, particularly in urban areas. This study seeks to determine the most advantageous pavement material for NOX reduction in urban areas and assess whether photocatalytic pavement blocks, proven to reduce NOX emissions, can serve as a viable alternative to conventional cement pavement blocks. To achieve this, a comparative life cycle cost (LCC) analysis was conducted between photocatalytic pavement blocks and conventional cement pavement blocks installed for their NOX reduction capabilities. The cost-saving benefits of NOX reduction were monetized for photocatalytic pavement blocks. The analysis period was based on the least common multiple of the replacement cycles of both pavement materials: 30 years. The results revealed that while photocatalytic pavement blocks initially produce higher installation costs than cement pavement blocks, they offer greater cost savings in terms of total cost and net present value due to their NOX reduction effect over the life cycle. Additionally, the cost-saving effects of photocatalytic pavement blocks are even more pronounced because their replacement period is 5 years longer than that of cement pavement blocks. This study holds significance in performing an LCC analysis of the previously unanalyzed photocatalytic pavement blocks while also demonstrating their potential as substitutes for cement pavement blocks.

회전원판 광촉매 반응기(Rotating Disk Photocatalytic Reactor)를 이용한 Rhodamine B의 색 제거 (Decolorization of Rhodamine B using Rotating Disk Photocatalytic Reactor)

  • 박영식
    • 한국물환경학회지
    • /
    • 제21권1호
    • /
    • pp.46-51
    • /
    • 2005
  • The photocatalytic oxidation of Rhodamine B (RhB) was studied using immobilized $TiO_2$ and rotating disk photocatalytic reactor. Immobilized $TiO_2$ onto the surface of the aluminum plate was employed as the photocatalyst and two 20 W germicidal lamps and two 20 W UV-BLB lamps were used as the light source and the reactor volume was 1.0 L. The effects of parameters such as the number of rotating disk, rpm of rotating disk, the number of coating, $H_2O_2$ and photo-fenton amounts, and the concentrations of anions and cations ($NO_3{^-}$, $SO_4{^{2-}}$, $Cl^-$, $Ca^{2+}$, $Zn^{2+}$, $Na^+$) were examined.

TiO2 나노튜브 촉매를 이용한 효율적인 폐수처리 (Effective Wastewater Purification Using TiO2 Nanotubular Catalyst)

  • 오한준;최형선;이종호;지충수
    • 대한금속재료학회지
    • /
    • 제47권2호
    • /
    • pp.91-98
    • /
    • 2009
  • The titania nanotubular layer for photocatalytic application was synthesized by anodization process in HF solution and the photocatalytic efficiencies of nanotubular film were evaluated by the decomposition rate of aniline blue. In order to facilitate the photocatalytic reaction, the electron acceptors such as potassium bromate, hydrogen peroxide and ammonium persulfate were added to aniline blue solution and the effects of electron acceptors on the dye degradation efficiency were evaluated. The results showed that the photocatalytic efficiency has markedly improved by adding the electron acceptors.

Preparation and photocatalytic activity of ACF/$TiO_2$ composites by using titanium n-butoxide and acid modified activated carbon fiber

  • Oh, Won-Chun;Kwon, Ho-Joug;Chen, Ming-Liang;Zhang, Feng-Jun;Ko, Weon-Bae
    • 한국결정성장학회지
    • /
    • 제19권3호
    • /
    • pp.144-151
    • /
    • 2009
  • Photocatalytic degradation of methylene blue (MB) in aqueous solution was investigated using $TiO_2$ coated on various acid modified activated carbon fiber (ACF). The ACFs/$TiO_2$ composites were prepared from titanium n-butoxide (TNB) as titanium precursor and various acid modified ACFs. The prepared samples are heat treated at 973 K. Then the ACF/$TiO_2$ composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX). Moreover, photocatalytic degradation of MB by the ACF/$TiO_2$ composites was determined under UV irradiation. The results shows that the photocatalytic activity of ACF/$TiO_2$ composites ($AT1{\sim}AT4$) prepared with TNB and various acid modified ACF was much better than that of ACF/$TiO_2$ composite (AT) prepared with TNB and non-acid modified ACF, and the effects improved with order of sample AT3 > AT4 > AT1 > AT2.

n-Pentane 증기의 광촉매 분해 시 Methyl Ethyl Ketone 증기와 Ethyl Acetate 증기의 영향 (Effect of Methyl Ethyl Ketone and Ethyl Acetate Vapor on Photocatalytic Decomposition of n-Pentane Vapor)

  • 감상규;전진우;이민규
    • 한국환경과학회지
    • /
    • 제23권6호
    • /
    • pp.1151-1156
    • /
    • 2014
  • The photocatalytic decomposition characteristics of single n-pentane, n-pentane mixed with methyl ethyl ketone (MEK), and n-pentane mixed with ethyl acetate (EA) by cylindrical UV reactor installed with $TiO_2$-coated perforated plane were studied. The effects of the residence time, the inlet gas concentration, and the oxygen concentration were investigated. The removal efficiency of n-pentane was increased with increasing the residence time and the oxygen concentration, but decreased with increasing the inlet concentration of n-pentane. The photocatalytic decomposition rates of single n-pentane, n-pentane mixed with MEK, and n-pentane mixed with EA fitted well on Langmuir-Hinshelwood kinetics equation. The maximum elimination capacities of single n-pentane, n-pentane mixed with MEK, and n-pentane mixed with EA were obtained to be $465g/m^3{\cdot}day$, $217g/m^3{\cdot}day$, and $320g/m^3{\cdot}day$, respectively. The presence of coexisting MEK and EA vapor had a negative effect on the photocatalytic decomposition of n-pentane and the negative effect of MEK was higher than that of EA.

Influence of Nitrogen Doping and Surface Modification on Photocatalytic Activity of $TiO_2$ Under Visible Light

  • Jeong, Bora;Park, Eun Ji;Jeong, Myung-Geun;Yoon, Hye Soo;Kim, Young Dok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.130.1-130.1
    • /
    • 2013
  • We made attempts to improve photocatalytic activity of $TiO_2$ nanoparticles under visible light exposure by combining two additional treatments. N-doping of $TiO_2$ by ammonia gas treatment at $600^{\circ}C$ increased absorbance of visible light. By coating thin film of polydimethylsiloxane (PDMS), and subsequent vacuum-annealing at $800^{\circ}C$, $TiO_2$, became more hydrophilic, thereby enhancing photocatalytic activity of $TiO_2$. Four types of $TiO_2$ samples were prepared, bare-$TiO_2$, hydrophilic-modified $TiO_2$ ($h-PDMS/TiO_2$), N-doped $TiO_2$ ($N/TiO_2$) and hydrophilic-modified and N-doped $TiO_2$ ($h-PDMS/N/TiO_2$). Adsorption capability was evaluated under dark condition and photocatalytic activity of $TiO_2$ was evaluated by photodegradation of MB under blue LED (400 nm< ${\lambda}$) irradiation. N-doping on $TiO_2$ was characterized using XPS and hydrophilic modification of $TiO_2$ surface was analyzed by FT-IR spectrometer. It was found that N-doping and hydrophilic modification both had positive effect on enhancing adsorption capability and photocatalytic activity of $TiO_2$ at the same time. Particularly, N-doping enhanced visible light absorption of $TiO_2$, whereas hydrophilic surface modification increased MB adsorption capacity. By combining these two strategies, photocatalytic acitivity under visible light irradiation became the sum of individual effects of N-doping and hydrophilic modification.

  • PDF

금속이온 치환법으로 제조된 티타니아를 이용한 유기물 분해에 대한 연구 (Study of Degradation of Organic matter using prepared Titania by Metal ions substitution process)

  • 이규환;이동석
    • 산업기술연구
    • /
    • 제28권A호
    • /
    • pp.19-22
    • /
    • 2008
  • In recent years, much attention has been paid to "Photocatalytic oxidation" as an alternative technique, where the pollutants are degraded by UV-irradiation in the presence of a semiconductor suspension such as titanium dioxide. $TiO_2$ is the most often used photocatalyst due to its considerable photocatalytic activity, high stability, non-environmental impact and low cost. 1n this research, the photocatalytic degradation of humic acid, acetaldehyde and methylene blue in $UV/TiO_2$ systems has been stydied. The effect of calcination temperature for manufacturing of $TiO_2$ photocatalysts and type of photocatalysts on photodegradation has been investigated. Photocatalysts with various metal ions(Mn, Fe, Cu and Pt) loading are tested to evaluate the effects of metal ions impurities on photodegradation. The photodegradation efficiency with $Pt-TiO_2$ or $Fe-TiO_2$ or $Cu-TiO_2$ is higher than Degussa P-25 powder. However, the photodegradation efficiency with $Mn-TiO_2$ is lower than Degussa P-25 powder. The photocatalytic properties of the nanocrystals were strongly dependent upon the crystallinity, particle size, standard reduction potential of various transition metal and electronegativity of various transition metal. As a result photocatalysts with various metal ion loading evaluated the effect of photodegradation.

  • PDF

초음파 발생 미스트를 이용한 TiO2 광촉매 시스템에서의 가스상 톨루엔 제거 (Removal of Gaseous Toluene Using a TiO2 Photocatalytic System with Mist Generated by Ultrasonic Atomization)

  • 최민석;한세현;장성찬;정용원
    • 한국대기환경학회지
    • /
    • 제25권3호
    • /
    • pp.211-218
    • /
    • 2009
  • Feasibility study of using $Ti0_2$ mist generated by ultrasonic atomization for photocatalytic degradation of gaseous toluene was attempted in this study. For this, the photocatalytic reactor consisting of mist generator and photo-reactor was designed. Most of experimental results showed that steady state reached about 30 minutes after the start of experiments. The effects of $Ti0_2$ concentration, toluene concentration, and UV wavelength on toluene removal ratio were investigated. It was found that the highest removal efficiency was obtained when $Ti0_2$ concentration was 0.6 g/L in slurry. At this condition, it was found that the toluene removal efficiency increased as toluene concentration in feed decreased. In order to investigate the effect of UV wavelength, experiments were carried out using three UV lamps with different UV wavelength. The results showed that the highest removal efficiency was achieved when the lamp with the shortest wavelength were employed.

석영관 광촉매 반응기를 이용한 Rhodamine B의 색도 제거 (Decolorization of Rhodamine B Using Quartz Tube Photocatalytic Reactor)

  • 박영식
    • 한국환경보건학회지
    • /
    • 제30권5호
    • /
    • pp.358-365
    • /
    • 2004
  • The photocatalytic oxidation of Rhodamine B(RhB) was studied using photocatalytic reactor filled with module of quartz tube. Module of quartz tube consisted of small quartz tube (inner diameter, 1.5 mm; outer diameter, 3 mm) bundle coated with powder $TiO_2$ and uncoated large quartz tube (inner diameter, 20 mm; outer diameter, 22 mm). Two 30 W germicidal lamp was used as the light source and the reactor volume was 0.5 l. The effects of parameters such as the coating materials and numbers, initial concentration, $H_{2}O_2$ dose and metal deposition (Ag, Pt and Fe) and simultaneous application of $H_{2}O_2$ and metal deposition. The results showed that the initial reaction constant of quartz module coated with powder $TiO_2$ was higher 1.4 time than that of the $TiO_2$ sol and optimum coating number is twice. In order to increase reaction rate, simultaneous application of photocatalytic and photo-fenton reaction using Fe coating and dose $H_{2}O_2$ dose increased reaction rate largely.