DOI QR코드

DOI QR Code

Effect of Methyl Ethyl Ketone and Ethyl Acetate Vapor on Photocatalytic Decomposition of n-Pentane Vapor

n-Pentane 증기의 광촉매 분해 시 Methyl Ethyl Ketone 증기와 Ethyl Acetate 증기의 영향

  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Jeon, Jin-Woo (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • Received : 2014.04.16
  • Accepted : 2014.05.28
  • Published : 2014.06.30

Abstract

The photocatalytic decomposition characteristics of single n-pentane, n-pentane mixed with methyl ethyl ketone (MEK), and n-pentane mixed with ethyl acetate (EA) by cylindrical UV reactor installed with $TiO_2$-coated perforated plane were studied. The effects of the residence time, the inlet gas concentration, and the oxygen concentration were investigated. The removal efficiency of n-pentane was increased with increasing the residence time and the oxygen concentration, but decreased with increasing the inlet concentration of n-pentane. The photocatalytic decomposition rates of single n-pentane, n-pentane mixed with MEK, and n-pentane mixed with EA fitted well on Langmuir-Hinshelwood kinetics equation. The maximum elimination capacities of single n-pentane, n-pentane mixed with MEK, and n-pentane mixed with EA were obtained to be $465g/m^3{\cdot}day$, $217g/m^3{\cdot}day$, and $320g/m^3{\cdot}day$, respectively. The presence of coexisting MEK and EA vapor had a negative effect on the photocatalytic decomposition of n-pentane and the negative effect of MEK was higher than that of EA.

Keywords

References

  1. Boulamanti, A. K., Philippopoulos, C. J., 2009, Photocatalytic degradation of C5-C7 alkanes in the gas-phase, Atmos. Environ., 43, 3168-3174. https://doi.org/10.1016/j.atmosenv.2009.03.036
  2. Cha, C. Y., Carlisle, C. T., 2001, Microwave process for volatile organic compounds abatement, J. Air Waste Manag. Assoc., 51, 1628-1641. https://doi.org/10.1080/10473289.2001.10464389
  3. Feiyan, C., Pehkonen, S. O., Ray, M. B., 2002, Kinetics and mechanisms of UV-photodegradation of chlorinated organics in the gas phase, Wat. Res., 36, 4203-4214. https://doi.org/10.1016/S0043-1354(02)00140-9
  4. Hamad, A., Fayed, M. E., 2004, Simulation-aided optimization of volatile organic compounds recovery using condensation, Chem. Eng. Res. Des., 82, 895-906. https://doi.org/10.1205/0263876041596724
  5. Haynes, T. N., Georgakis, C., Caram, H. S., 1995, The design of reverse flow reactors for catalytic combustion systems, Che. Eng. Sci., 50, 401-416. https://doi.org/10.1016/0009-2509(94)00243-K
  6. Jenkin, M. E., Hayman, G. D., 1999, Photochemical ozone creation potentials for oxygenated volatile organic compounds: sensitivity to variations in kinetic and mechanistic parameters, Atmos. Environ., 33, 1275-1293. https://doi.org/10.1016/S1352-2310(98)00261-1
  7. Jeon, J. W., Lee, D. H., Seo, J. S, Kam, S. K, Lee, M. G., 2013, Photocatalytic oxidation characteristics of benzene, toluene, and ethylbenzene by UV reactor inserted $TiO_{2}$-coated porous screw, Proceed. Korean Environ. Sci. Soc. Conf., 22, 750-753.
  8. Keller, V., Bernhardt, P., Garin, F., 2003, Photocatalytic oxidation of butyl acetate in vapor phase on $TiO_{2}$, Pt/$TiO_{2}$ and $WO_{3}$/$TiO_{2}$ catalysts, J. Catal., 215, 129-138. https://doi.org/10.1016/S0021-9517(03)00002-2
  9. Lee, M. G., Lee, S. W., Kam, S. K., Lee, S. H., 2012, Variation of adsorption characteristics of binary vapor according to packing system of double-layer adsorption bed, J. Environ. Sci., 21, 305-312.
  10. Pengyi, Z., Fuyan, L., Gang, Y., Qing, C., Wanpeng, Z., 2003, A comparative study on decomposition of gaseous toluene by $WO_{3}$/UV, $TiO_{2}$/UV and $WO_{3}$/$TiO_{2}$/UV, J. Photochem. Photobiol. A, 156, 189-194. https://doi.org/10.1016/S1010-6030(02)00432-X
  11. Shang, J., Du, Y., Xu, Z., 2002, Photocatalytic oxidation of heptane in the gas-phase over $TiO_{2}$, Chemoshere, 46, 93-99. https://doi.org/10.1016/S0045-6535(01)00115-1
  12. Shang, J., Li, W., Zhu, Y., 2003, Structure and photocatalytic characteristics of $TiO_{2}$ film photocatalyst coated on stainless steel webnet, J. Mol. Catal. A: Chem., 202, 187-195. https://doi.org/10.1016/S1381-1169(03)00200-0
  13. Urashima, K., Chang, J. S., 2000, Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology, IEEE Trans. Dielectr. Electr. Insul., 7, 602-614. https://doi.org/10.1109/94.879356
  14. Vildozo, D., Portela, R., Ferronato, C., Chovelong, J. M., 2011, Photocatalytic oxidation of 2-propanol/toluene binary mixtures at indoor air concentration levels, Appl. Catal. B: Environ., 107, 347-354. https://doi.org/10.1016/j.apcatb.2011.07.035
  15. Vincent, G., Marquaire, P. M., Zahraa, O., 2008, Abatement of volatile organic compounds using an annular photocatalytic reactor: study of gaseous acetone, J. Photochem. Photobiol. A: Chem., 197, 177-189. https://doi.org/10.1016/j.jphotochem.2007.12.021
  16. Vincent, G., Queffeulou, A., Marquaire, P. M., Zahraa, O., 2007, Remediation of olfactory pollution by photocatalytic degradation process: Study of methyl ethyl ketone (MEK), J. Photochem. Photobiol. A: Chem., 191, 42-50. https://doi.org/10.1016/j.jphotochem.2007.04.002
  17. Wang, J. H., Ray, M. B., 2000, Application of ultraviolet photooxidation to remove organic pollutants in the gas phase, Sep. Purif. Technol., 19, 11-20. https://doi.org/10.1016/S1383-5866(99)00078-7
  18. Wu, C., Zhao, X., Ren, Y., Yue, Y., Hua, W., Cao, Y., Tang, Y., Gao, Z., 2005, Gas-phase photo-oxidations of organic compounds over different forms of zirconia, J. Mol. Catal. A: Chem., 229, 233-239. https://doi.org/10.1016/j.molcata.2004.11.029
  19. Zhang, Y. P., Yang, R., Xu, Q. J., Mo, J. H., 2007, Characteristics of photocatalytic oxidation of toluene, benzene, and their mixture, J. Air Waste Manage. Assoc., 57, 94-101. https://doi.org/10.1080/10473289.2007.10465302

Cited by

  1. Removal Characteristics of Single and Binary Vapors of Acetone, Toluene, and Methyl Mercaptan by Cylindrical UV Reactor Installed with TiO2-Coated Perforated Plane vol.24, pp.3, 2015, https://doi.org/10.5322/JESI.2015.24.3.317