• 제목/요약/키워드: Photo-curable Resin

검색결과 20건 처리시간 0.028초

쾌속조형과 스크린 인쇄기술을 이용한 빌드업인쇄회로기판의 제조공정기술개발 (Development of Build-up Printed Circuit Board Manufacturing Process Using Rapid Prototyping Technology and Screen Printing Technology)

  • 조병희;정해도;정해원
    • 한국정밀공학회지
    • /
    • 제17권2호
    • /
    • pp.130-136
    • /
    • 2000
  • Generally, the build-up printed circuit board manufactured by the sequential process with etching, plating, drilling etc. requires many types of equipments and lead time. Etching process is suitable for mass production, however, it is not adequate for manufacturing prototype in the developing stage. In this study, we introduce a screen printing technology to prototyping a build-up printed circuit board. As for the material, photo/thermal curable resin and conductive paste are used for the formation of dielectric and conductor. The build-up structure is made by subsequent processes such as the formation of liquid resin thin layer, the solidification by UV/IR light, and via filling with conductive paste. By use of photo curable resin, productivity is greatly enhanced compared with thermal curable resin. Finally, the basic concept and the possibility of build-up printed circuit board prototyping are proposed in comparison with to the conventional process.

  • PDF

Development of Build-up Printed Circuit Board Manufacturing Process Using Rapid Prototyping Technology and Screen Printing Technology

  • Im, Yong-Gwan;Cho, Byung-Hee;Chung, Sung-Il;Jeong, Hae-Do
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권4호
    • /
    • pp.51-56
    • /
    • 2003
  • Generally, the build-up printed circuit board manufactured by a sequential process involving etching, plating, drilling, etc, which requires many types of equipments and long lead time. Etching process is suitable for mass production, however, it is not adequate for manufacturing a prototype in the development stage. In this study, we introduce a screen printing technology for prototyping a build-up printed circuit board. As for the material, photo/thermal curable resin and conductive paste are used for the formation of dielectric and conductor. The build-up structure is made by subsequent processes such as formation of a liquid resin thin layer, solidification by a UV/IR light, and via hole filling with a conductive paste. By use of photo curable resin, productivity is greatly enhanced compared with thermal curable resin. Finally, the basic concept and the possibility of build-up printed circuit board prototyping are proposed in comparison with the conventional process.

광경화성 레진의 성분 변화에 대한 소수성 표면 제작을 위한 공정 조건 (Process Conditions for the Fabrication of Hydrophobic Surfaces with Different Photo-curable Resins)

  • 홍성호;우흥식
    • Tribology and Lubricants
    • /
    • 제36권5호
    • /
    • pp.267-273
    • /
    • 2020
  • This study experimentally investigates hydrophobic surfaces fabricated via additive manufacturing. Additive manufacturing, commonly known as 3D printing, is the process of joining materials to fabricate parts from 3D model data, usually in a layer-upon-layer manner. Digital light processing is used to fabricate hydrophobic surfaces in this study. This method uses photo-curable resins and ultraviolet (UV) sources. Moreover, this technique generally has faster shaping speeds and is advantageous for the fabrication of small components because it enables the fabrication of one layer at a time. Two photo-curable resins with different compositions are used to fabricate micro-patterns of hydrophobic surfaces. The resins are composed of a photo-initiator, monomer, and oligomer. Experiments are conducted to determine suitable process conditions for the fabrication of hydrophobic surfaces depending on the type of resin. The most important factors affecting the process conditions are the UV exposure time and slice thickness. The fabrication capability according to the process conditions is evaluated using the side and top views of the micro-patterns observed using a microscope. The micro-patterns are collapsed and intertwined when the exposure time is short because sufficient light (heat) is not applied to cure the photo-curable resin with a given slice thickness. On the other hand, the micro-patterns are attached to each other when the exposure time is prolonged because the over-curing time can cure the periphery of a given shape. When the slice is thicker, the additional curing area is enlarged in each slice owing to the straightness of UV light, and the slice surface becomes rough.

광·열경화형 수지를 이용한 탄소섬유 프리프레그의 물리적 특성 (Mechanical Characteristics of CF Laminated Prepreg with UV-thermal Dual Curable Epoxy Resin)

  • 심지현;김지혜;박성민;구광회;장기욱;배진석
    • 한국염색가공학회지
    • /
    • 제29권1호
    • /
    • pp.37-44
    • /
    • 2017
  • An issue of major concern in the utilization of laminated composites based epoxy resin is associated with the occurrence of delaminations or interlaminar cracks, which may be related to manufacturing defects or are induced in service by low-velocity impacts. A strong interfacial filament/brittle epoxy resin bonding can, however, be combined with the high fracture toughness of weak interfacial bonding, when the filaments are arranged to have alternate sections of shear stress. To improve this drawback of the epoxy resin, UV-thermal dual curable resin were developed. This paper presents UV-thermal dual curable resin which were prepared using epoxy acrylate oligomer, photoinitiators, a thermal-curing agent and thermoset epoxy resin. The UV curing behaviors and characteristics of UV-thermal dual curable epoxy resin were investigated using Photo-DSC, DMA and FTIR-ATR spectroscopy. The mechanical properties of UV-thermal dual curable epoxy resin impregnated CF prepreg by UV curable resin content were measured with Tensile, Flextural, ILSS and Sharpy impact test. The obtained results showed that UV curable resin content improves the epoxy toughness.

광경화성 아크릴레이트 복합체를 이용한 나노 임프린트 패턴 형성 (Nanoimprinting Pattern Formation Using Photo-Curable Acrylate Composites)

  • 김성현;박선희;문성남;이우일;송기국
    • 폴리머
    • /
    • 제36권4호
    • /
    • pp.536-541
    • /
    • 2012
  • 실리카 입자가 첨가된 광경화성 임프린트용 복합체를 제조하여 실리카 양에 따른 경화 특성과 전사된 수 백 나노미터 크기의 임프린트 패턴 형성에 관한 결함을 조사하였다. 상온에서 UV 경화한 임프린트 레진은 실리카 양이 증가할수록 탄성률이 커지고 수축률이 줄어드는 것을 알 수 있었다. 그러나 실리카 입자의 양이 7 wt% 이상인 경우 전사된 나노기둥끼리 서로 달라붙는 결함을 보이는데, 이는 실리카 입자가 광반응을 방해하여 임프린트 레진의 경화가 불완전하게 되면서 광경화된 레진의 점성이 증가했기 때문이다. 임프린트 레진에 실리카 입자를 충전제로 사용하면 경화 후 나노 패턴의 강도를 증가하여 형태를 유지하는데 도움이 되지만, 실리카 양이 7 wt% 이상이 되면 오히려 광반응 전환율이 떨어져 임프린트 공정에 의한 나노 패턴의 전사가 어려운 것을 알 수 있다.

광경화성 아크릴 수지의 경화특성에 관한 연구 (Study on the Curing Properties of Photo-curable Acrylate Resins)

  • 김성현;장현석;박선희;송기국
    • 폴리머
    • /
    • 제34권5호
    • /
    • pp.469-473
    • /
    • 2010
  • 광경화성 수지인 아크릴레이트의 경화 특성과 메카니즘에 대하여 Photo-DSC와 FTIR, Raman spectrometer를 이용하여 조사하였다. 아크릴레이트 종류, 관능기 수, 광 세기 등에 따른 경화 속도에 관한 정보는 시간에 따른 Photo-DSC curve에서 계산하였고, FTIR과 Raman을 이용하여 경화 반응의 전환율과 반응 메카니즘을 조사하였다. 광경화 반응에서 산소의 영향을 알아보기 위하여 아크릴레이트 수지와 thiol-ene 수지의 경화과정을 비교하였는데, 공기 중 산소가 아크릴레이트의 라디칼 반응에서 금지제로 작용하여 아크릴레이트 수지는 80% 이하의 전환율을 보인 반면 thiol-ene 수지는 산소가 반응에 영향을 미치지 않는 것을 알 수 있었다.

다중재료 광조형장치 개발 (Development of a Multi-material Stereolithography System)

  • 김호찬;최재원
    • 한국정밀공학회지
    • /
    • 제27권3호
    • /
    • pp.135-141
    • /
    • 2010
  • Researchers continue to explore possibilities for expanding additive manufacturing (AM) technologies into direct product manufacturing. One limitation is in the materials available for use in AM that can meet the needs of end-use applications. Stereolithography (SL) is an AM technology well known for its precision and high quality surface finish capabilities. SL builds parts by selectively crosslinking or solidifying photo-curable liquid resins, and the resin industry has been continuously developing new resins with improved performance characteristics. This paper introduces a unique SL machine that can fabricate parts out of multiple SL materials. The technology is based on using multiple vats positioned on a rotating vat carousel that contain different photo-curable materials. To change the material during the process, the build platform is raised out of the current vat, a new vat with a different material is rotated under the platform, and the platform is submerged into the new vat so that the new material can be used. This paper introduces a new vat exchange mechanism, cleaning process, recoating process, resin leveling mechanism and process planning technologies for the implementation of multiple material SL. An overview of the system framework is provided and the system integration and control software is described. In addition, several multiple material test parts are designed, fabricated, and described.

Photostabilization and Cure Kinetics of UV-Curable Optical Resins Containing Photostabilizers

  • Cho, Jung-Dae;Kim, Sung-Hwa;Chang, In-Cheol;Kim, Kwon-Seok;Hong, Jin-Who
    • Macromolecular Research
    • /
    • 제15권6호
    • /
    • pp.560-564
    • /
    • 2007
  • The photostabilization and cure kinetics of UV-curable, optical resins containing various formulations of photostabilizers were investigated to determine the system with the highest cure conversion and durability. Photo-DSC analysis revealed that increasing the concentration of a UV absorber (UVA) decreased both the crosslink density and the cure rate due to competition for the incident photons between the photoinitiator and the UVA, whereas including a hindered amine light stabilizer (HALS) hardly affected either the cure conversion or the cure rate due to its very low absorption of 365 nm. This result was confirmed by FTIR-ATR spectroscopy and UV-visible spectroscopy analyses. QUV ageing experiments showed that the cure conversion and durability were the highest for the UVA/HALS formulation at a ratio of 1 : 2, which is due to their synergistic action.

스크린인쇄 법을 이용한 Build-up다층인쇄회로기판의 쾌속제조공정 기술개발 (Development of Build up Multilayer Board Rapid Manufacturing Process Using Screen Printing Technology)

  • 조병희;정해도;정해원
    • 마이크로전자및패키징학회지
    • /
    • 제6권4호
    • /
    • pp.15-22
    • /
    • 1999
  • 일반적으로 빌드업 다층 인쇄회로기판은 에칭, 도금등의 습식공정에 의해 제작이 이루어지므로 많은 장비와 많은 시간이 필요하게 된다. 이러한 습식공정은 양산에는 적합하지만 개발단계에서는 그리 적합하지 않은 방법이다. 본 연구에서는 스크린 인쇄기술을 도입하여 빌드업 다층 인쇄회로기판을 제작하여 보았다. 절연성 재료로는 광경화성수지 또는 열경화성수지를 사용하였으며 전도성 재료로는 전도성 페이스트를 사용하였다. 층간의 전기적 연결을 담당하는 비아와 회로를 형성하기 위해 스크린 인쇄공정을 통해 전도성 페이스트를 인쇄 하였다. 이러한 방법을 통해 제품의 개발 단계에서 기존의 빌드업 다층 인쇄회로기판 제작 공정과 비교하여 좀더 효율적인 방법을 제시하였다.

  • PDF