• 제목/요약/키워드: Photo-conductivity

검색결과 57건 처리시간 0.05초

Characteristics of fluoride/glass as a seed layer for microcrystalline silicon film growth

  • Choi, Seok-Won;Kim, Do-Young;Ahn, Byeong-Jae;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2000년도 제1회 학술대회 논문집
    • /
    • pp.65-66
    • /
    • 2000
  • Various fluoride films on a glass substrate were prepared and characterized to provide a seed layer for crystalline Si film growth. The XRD analysis on $CaF_2/glass$ illustrated (220) preferential orientation and showed lattice mismatch less than 5 % with Si. We achieved a fluoride film with breakdown electric field of 1.27 MV/cm, leakage current density about $10^{-6}$ $A/cm^2$, and relative dielectric constant less than 5.6. This paper demonstrates microcrystalline silicon $({\mu}c-Si)$ film growth by using a $CaF_2/glass$ substrate. The ${\mu}c-Si$ films exhibited crystallization in (111) and (220) planes, grain size of $700\;{\AA}$, crystalline volume fraction over 65 %, dark- and photo-conductivity ratio of 124, activation energy of 0.49 eV, and dark conductivity less than $4{\times}10^{-7}$ S/cm.

  • PDF

새로운 광변색성 Spiroxazine색소의 합성과 특성 (Syntheses and Characterisitics of New Photochromic Spiroxazine Dyes)

  • 김성훈
    • 한국인쇄학회지
    • /
    • 제12권1호
    • /
    • pp.159-168
    • /
    • 1994
  • The Aggregation State of thin vapor deposite Film made by Cyanine Dye were changed into Monomeric molecular state(M) and Dimeric Aggregation(D) at the acidic treatment, into reversible H-Aggregation (H) at alkalic gas or heat treatment. Photo-electric properties were higher H than D and M, this stats were effective in enhancing Photoelectric-conversion characteristic. Substitute group of Meso-Position being stronger electronic Donors, Electronic density is higher and Electric conductivity is enhanced, we confirmed Oscillator Strength calculated by PPP-Molecular Orbital Calculation and Absorption Spectra at solvent stats were agreed good.

  • PDF

유기절연물의 전기전도와 절연파괴 (Electric conduction and breakdown of organic insulator)

  • 성영권
    • 전기의세계
    • /
    • 제16권4호
    • /
    • pp.11-16
    • /
    • 1967
  • A physical analysis is applied to the measured phenomena of aromatic organic compounds under the uniform electric field of 0.1MV/cm through 1.5MV/cm, when they are irradiated or non-irradiated respectively. Upon the observations about irradiation effects, space charge effects and their temperature dependance, the conditions of lattice defects act conspicuously on electric conductrivity, photo conductivity and dielectric breakdown. Although the qualitative agreement with Frohlich's high energy criterion theory for the above mechanisms is poor, it is concluded that the phenomena of aromatic compounds may possibly be due to the effect of lattice defects or impurity centers generated by .gamma.-ray irradiations.

  • PDF

세공충진 음이온 전도성막의 제조 및 이를 이용한 고체알칼리 연료전지 성능 평가 (Pore-filling anion conducting membranes and their cell performance for a solid alkaline fuel cell)

  • 최영우;이미순;박구곤;임성대;양태현;김창수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.129.2-129.2
    • /
    • 2010
  • AEM which were used for solid alkaline fuel cell(SAFC) were prepared by photo polymerization in method pore-filling with various quaternary ammonium cationic monomers and crosslinkers without an amination process. Their specific thermal and chemical properties were characterized through various analyses and the physico-chemical properties of the prepared electrolyte membranes such as swelling behavior, ion exchange capacity and ionic conductivity were also investigated in correlation with the electrolyte composition. The polymer electrolyte membranes prepared in this study have a very wide hydroxyl ion conductivity range of 0.01 - 0.45S/cm depending on the composition ratio of the electrolyte monomer and crosslinking agent used for polymerization. However, the hydroxyl ion conductivity of the membranes was relatively higher at the whole cases than those of commercial products such as A201 membrane of Tokuyama. These pore-filling membranes have also excellent properties such as smaller dimensional affects when swollen in solvents, higher mechanical strength, lowest electrolyte crossover through the membranes, and easier preparation process compared of traditional cast membranes. The prepared membranes were then applied to solid alkaline fuel cell and it was found comparable fuel cell performance to A201 membrane of Tokuyama.

  • PDF

디지털 프린팅을 위한 전도성 배선에 관한 연구 (Investigation of Conductive Pattern Line for Direct Digital Printing)

  • 김용식;서상훈;이로운;김태훈;박재찬;김태구;정경진;윤관수;박성준;정재우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.502-502
    • /
    • 2007
  • Current thin film process using memory device fabrication process use expensive processes such as manufacturing of photo mask, coating of photo resist, exposure, development, and etching. However, direct printing technology has the merits about simple and cost effective processes because inks are directly injective without mask. And also, this technology has the advantage about fabrication of fine pattern line on various substrates such as PCB, FCPB, glass, polymer and so on. In this work, we have fabricated the fine and thick metal pattern line for the electronic circuit board using metal ink contains Ag nano-particles. Metal lines are fabricated by two types of printing methods. One is a conventional printing method which is able to quick fabrication of fine pattern line, but has various difficulties about thick and high resolution DPI(Dot per Inch) pattern lines because of bulge and piling up phenomenon. Another(Second) methods is sequential printing method which has a various merits of fabrication for fine, thick and high resolution pattern lines without bulge. In this work, conductivities of metal pattern line are investigated with respect to printing methods and pattern thickness. As a result, conductivity of thick pattern is about several un.

  • PDF

상대전극 제작 방식에 따른 염료감응형 태양전지 특성 비교 연구 (A comparative study on the characteristics of the dye-sensitized solar cell with different methods of manufacturing the counter electrode)

  • 손민규;서현웅;신인영;김진경;홍지태;채원용;김희제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1338_1339
    • /
    • 2009
  • Dye-sensitized solar cell (DSC) consists of photo electrode, counter electrode and electrolyte. Photo electrode has titanium oxide layer with dye molecule to create electrons. And counter electrode is made of one layer that has catalytic ability for redox system such as the iodide/triiodide couple. Most DSC researchers use platinum as catalyst on counter electrode because platinum has good catalytic ability and conductivity. Platinum is doped on fluorine-doped tin oxide glass with different methods such as sputtering method, electrochemical method and so on. In this paper, we deposit platinum on counter electrode glass with two methods. One is the radio frequency (RF) sputtering method and the other is the chemical method with heating treatment. Finally, we compare the photovoltaic characteristics of DSCs that are assembled using two different counter electrodes.

  • PDF

$GeH_4$ 가스 함량에 따른 SiGe 박막의 특성변화

  • 조재현;안시현;박형식;장경수;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.227-227
    • /
    • 2010
  • 기존 실리콘 박막 태양 전지는 적외선에 대한 감응도와 흡수도가 낮아서 광흡수율을 증가시킬 경우 효율의 효과적인 개선이 기대되어진다. 이를 개선하기 위해서 밴드갭이 Si에 비해 상대적으로 낮은 Ge을 도입함으로써 Si와 Ge 화합물을 형성할 경우 결정상태와 수소 함유량에 따라 밴드갭 조절이 가능하다. 또한 Ge는 Si에 비해 빛에 대한 감응도가 우수하여 광흡수율을 증가시킬수 있다. 단 SiGe 박막의 Ge 량이 일정량이상 많아질 경우 박막 내 결함 등의 생성으로 광변환 효율이 오히려 감소하므로 Ge 량의 적정화가 필요하다. 본 실험에 사용된 SiGe:H Layer는 $SiH_4$ 가스와 $GeH_4$ 가스를 혼합하여 증착하였고 증착두께는 150nm로 고정하였으며 증착장비는 PECVD를 이용하였다. 파워는 플라즈마의 방전특성을 알아본 후 최소파워를 이용하여 증착하였다. 이는 증착 시 플라즈마에 의한 박막 손상을 최소화하기 위함이다. Ellipsometry를 이용하여 박막의 두께와 optical bandgap을 측정하였다. 박막의 특성을 평가하기 위해서 STA 장비를 이용하여 dark conductivity, photo conductivity, activation energy 등을 측정하였고, MDC를 이용해 C-V 곡선을 측정하였고, 이를 terman method를 이용하여 $D_{it}$를 계산하였다.

  • PDF

Synthesis and Characterization of 2, 6-Di-(4'-Methyl Phenyl) Pyrylium Fluoroborate and Perchlorate in Single Step Salts Using 4'-Methyl Acetophenone

  • Wie, Jin-Hyeong;Hong, Young-Min;Kim, Hyun-Ook;Kim, Kyung-Hoon;Cho, Sung-Il
    • 센서학회지
    • /
    • 제21권1호
    • /
    • pp.13-20
    • /
    • 2012
  • Due to its high conductivity, pyrylium has been frequently used in electron transfer reactions or in the synthesis of various organic materials. It has also been used as a sensor material. Traditionally, the compounds have been synthesized using various methods; mostly in a multiple steps. In this study, two pyrylium salts, 2, 6-di-(4'-methylphenyl) pyrylium fluoroborate and perchlorate were synthesized. The synthesis of these products was confirmed by 1H-NMR, LC/TOF-MS and FT-IR analyses while their photo-properties were analyzed using UV/VIS spectrophotometry. In addition, the electron transfer capacities of the salts were analyzed with a conductivity meter, it was found that their electron conductivities were high. When the synthesized compounds were dissolved in acetone, a green fluorescent material was observed to form. The fluorescent material can be used as a sensitizer in the electrical industry.

CBD법을 이용한 Cd1-xZnxS 박막의 광학적 특성분석 (The analysis on the optical properties of $Cd_1-_xZn_xS$ films deposited by CBD method)

  • 송우창;이재형;김정호;문중섭;박용관;양계준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1649-1651
    • /
    • 2000
  • Optical properties of $Cd_{1-x}Zn_{x}S$ films deposited by :chemical bath deposition(CBD), which is a very attractive method for low-cost and large-area solar cells, are presented, Especially, in order to control more effectively the zinc component of the films, zinc acetate, which used as the zinc source, mixed in reaction solution after preheating and the pH of the reaction solution decreased with increasing the concentration of zinc acetate. The films prepared after preheating and pH control had larger zinc component and higher optical band gap. As the more zinc substituted for Cd in the films, the optical transmittance improved, while the absorption edge shifts to a shorter wavelength and the optical band gap increased. The photo conductivity of the films was larger than the dark conductivity, while the ratio of those increased with increasing the mole ratio of zinc acetate.

  • PDF

The Properties of Boron-doped Zinc Oxide Film Deposited according to Oxygen Flow Rate

  • Kim, Dong-Hae;Son, Chan-Hee;Yun, Myoung-Soo;Lee, Jin-Young;Jo, Tae-Hoon;Seo, Il-Won;Jo, I-Hyun;Roh, Jun-Hyung;Choi, Eun-Ha;Uhm, Han-Sup;Kwon, Gi-Chung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.358-358
    • /
    • 2012
  • The application of BZO (Boron-doped Zinc Oxide) films use as the TCO(Transparent Conductive Oxide) material for display and solar cell industries, where the conductivity of the BZO films plays a critical role for improvement of cell performance. Thin BZO films are deposited on glass substrates by using RF sputter system. Then charging flow rates of O2 gas from zero to 10 sccm, thereby controlling the impurity concentration of BZO. BZO deposited on soda lime glass and RF power was 300 W, frequency was 13.56 MHz, and working pressure was $5.0{\times}10-6$ Torr. The Substrate and glass between distance 200 mm. We measured resistivity, conductivity, mobility by hall measurement system. Optical properties measured by photo voltaic device analysis system. We measured surface build according to oxygen flow rate from XPS (X-ray Photoelectron Spectroscopy) system. The profile of the energy distribution of the electrons emitted from BZO films by the Auger neutralization is measured and rescaled so that Auger self-convolution arises, revealing the detail structure of the valence band. It may be observed coefficient ${\gamma}$ of the secondary electron emission from BZO by using ${\gamma}$-FIB (Gamma-Focused Ion Beam) system. We observed the change in electrical conductivity by correlation of the valence band structure. Therefore one of the key issues in BZO films may be the valence band that detail structure dominates performance of solar cell devices. Demonstrating the secondary electron emission by the Auger neutralization of ions is useful for the determination of the characteristics of BZO films for solar cell and display developments.

  • PDF