• 제목/요약/키워드: Photo-catalysis

검색결과 22건 처리시간 0.026초

Zebrafish 발생기에서 $TiO_2(P-25)$ 나노 입자의 생물 독성 (Bio-toxicity of Titanium Dioxide Nano Particles (P-25) in Zebrafish Development Stage)

  • 여민경;조윤희
    • Environmental Analysis Health and Toxicology
    • /
    • 제22권3호
    • /
    • pp.189-196
    • /
    • 2007
  • [ $TiO_2$ ] is widely used because it is non-toxic. Recently, however, nanometer size $TiO_2$ particles (P-25) have been produced and used to increase the photo catalysis efficiency. Nanometer-sized $TiO_2$ is efficient, but due to its small size ($20{\sim}30\;nm$), it can flow into ecosystems and into cells. Thus, it may affect human health. Additionally, $TiO_2$ can produce a second contaminant, OH-radical, which is a health risk for all living organisms during photo degradation reaction. Hence, when nanometer-sized $TiO_2$ flows into natural streams and attaches to living organisms, it will create health risks. We investigated the biological toxicity of this condition in zebrafish embryos. We observed abnormal morphology, hatching rate, and measured the catalase activity to determine anti-oxidation at 100 post fertilization hours. Zebrafish were somewhat affected by $TiO_2$ nanometer sized particles under UV-A (a condition similar to sunlight). Powdered $TiO_2$ is toxic to the zebrafish fly. Even without light, $TiO_2$ particles attached to embryos and flies, having an effect on both.

Enhanced Hydrogen Production from Methanol/Water Photo-Splitting in TiO2 Including Pd Component

  • Kwak, Byeong-Sub;Chae, Jin-Ho;Kim, Ji-Yeon;Kang, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권5호
    • /
    • pp.1047-1053
    • /
    • 2009
  • The future use of hydrogen as an energy source is expected to increase on account of its environmentally friendliness. In order to enhance the production of hydrogen, Pd ions (0.01, 0.05, 0.1, and 0.5 mol%) were incorporated $TiO_2$ (Pd-$TiO_2$) and used as a photocatalyst. The UV-visible absorbance decreased with increasing level of palladium incorporation without a wavelength shift. Although all the absorption plots showed excitation characteristics, there was an asymmetric tail observed towards a higher wavelength caused by scattering. However, the intensity of the photoluminescence (PL) curves of Pd-$TiO_2$ was smaller, with the smallest case being observed at 0.1 and 0.5 mol% Pd-$TiO_2$, which was attributedto recombination between the excited electrons and holes. Based on these optical characteristics, the evolution of $H_2$ from methanol/water (1:1) photo-splitting over Pd-$TiO_2$ in the liquid system was enhanced, compared with that over pure $TiO_2$. In particular, 2.4 mL of $H_2$ gas was produced after 8 h when 0.5 g of a 1.0 mol% Pd-$TiO_2$ catalyst was used. $H_2$ was stably evolved even after 28 h without catalytic deactivation, and the amount of $H_2$ produced reached 14.5 mL after 28 h. This is in contrast to the case of the Pd 0.1 mol% impregnated $TiO_2$ of $H_2$ evolution of 17.5 mL due to the more decreasedelectron-hole recombination.

Carbon Doping of TiO2 for Visible Light Photo Catalysis - A review

  • Palanivelu, K.;Im, Ji-Sun;Lee, Young-Seak
    • Carbon letters
    • /
    • 제8권3호
    • /
    • pp.214-224
    • /
    • 2007
  • The field of photocatalysis is one of the fastest growing areas both in research and commercial fields. Titanium dioxide is the most investigated semi-conductor material for the photocatalysis applications. Research to achieve $TiO_2$ visible light activation has drawn enormous attentions because of its potential to use solar light. This paper reviews the attempts made to extend its visible photocatalytic activity by carbon doping. Various approaches adopted to incorporate carbon to $TiO_2$ are summarized highlighting the major developments in this active research field. Theoretical features on carbon doping are also presented. Future scenario in the rapidly developing and exciting area is outlined for practical applications with solar light.

졸-겔법에 의한 나노크기 Au 미립자 분산 TiO2 박막의 특성 (Characteristics of Nano-Size Au Fine Particles Doped TiO2 Thin Films by Sol-Gel Method)

  • 박민정;구세나;이경석;문종수
    • 한국세라믹학회지
    • /
    • 제43권2호
    • /
    • pp.114-120
    • /
    • 2006
  • Nano-size Au particle doped $TiO_2$ films were prepared with $Ti(OC_3H_7^i)_4$, polyvinylpyrrolidone(PVP), $HAuCl_4$ and $C_3H_7OH$ etc. by sol-gel method. $TiO_2$ gel films were obtained by the dip-coating method on the $SiO_2$ glass substrates, and then heat-treated at $700^{\circ}C$ for 10 min. The thickness of $TiO_2$ films were $0.7\~1.8\;{\mu}m$. It was found that the thickness of films prepared from PVP containing solution was about $2\~8$ times higher values than that of thin films without PVP. The size of Au particles doped in the films were about $350\~750\;nm$. Nano-size Au particle dispersed $TiO_2$ films showed high absorption peak at visible region 450nm, which made them good candidates for non-linear optical materials and photo-catalytic materials. The contact angle of $TiO_2$ film for water was $12.5^{\circ}$, and therefore it is clear that $TiO_2$ films have very high hydrophilic properties and the self-cleaning effects.

Effect of Precursor Concentration on the Structural, Morphological, and Optical Properties of TiO2 Nano-Flowers

  • Anwar, M.S.;Danish, Rehan;Park, Keun Young;Koo, Bon Heun
    • 한국재료학회지
    • /
    • 제25권5호
    • /
    • pp.247-252
    • /
    • 2015
  • The effect of precursor concentration on the structural, morphological, and optical properties of $TiO_2$nano-flowers was investigated in this study. An increase in crystallite size was observed with an increase in the concentration of the precursor (titanium butoxide). The FE-SEM micrographs of the as-prepared samples show a three-dimensional flower-like morphology. The flowers consist of several nanorods coming out of a single core and have very sharp edges. Also, the variation in the aspect ratio of the nanostructure was observed with the concentration of the precursor. The photocatalytic properties of the samples show that the sample that has a high aspect ratio (AR~9) has a much better photocatalytic activity compared to the nano-crystal with a low aspect ratio (AR~6.1). It is believed that the excellent photocatalytic performance and short time synthesis of $TiO_2$nano-flowers using the microwave hydrothermal method can have potential applications in the field of photocatalysis.

다양한 온도에서 열처리한 씨앗 층 위에 열수화법을 이용한 ZnO 나노 막대의 성장

  • 배영숙;김영이;김동찬;공보현;안철현;최미경;우창호;한원석;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.433-433
    • /
    • 2009
  • ZnO-based materials have been extensively studied for optoelectronic applications due to their superiors physical properties such as wide direct bandgap (~3.37 eV), large exciton binding energy (~60 meV), high transparency in the visible region, and low cost. Especially, one-dimensional (1D) ZnO nanostructures have attracted considerable attention owing to quantum confinement effect and high crystalline quality. Additionally, various nanostructures of ZnO such as nanorods, nanowires, nanoflower, and nanotubes have stimulated the interests because of their semiconducting. and piezoelectric properties. Among them, vertically aligned ZnO nanorods can bring the improved performance in various promising photoelectric fields including piezo-nanogenerators, UV lasers, dye sensitized solar cells, and photo-catalysis. In this work, we studied the effect of the annealing temperature of homo seed layers on the formation of ZnO nanorods grown by hydrothermal method. The effect of annealing temperature of seed layer on the length and orientation of the nanorods was investigated scanning electron microscopy investigation. Transmission electron microscopy and X-ray diffraction measurement were performed to understand the effect of annealing temperatures of seed layers on the formation of nanorods. Moreover, the optical properties of the seed layers and the nanorods were studied by room temperature photoluminescence.

  • PDF

분말 광촉매를 이용한 광전기화학 공정에서 Rhodamine B의 색 제거 (Color Removal of Rhodamine B by Photoelectrochemical Process using Powder TiO$_2$)

  • 김동석;박영식
    • 대한환경공학회지
    • /
    • 제30권8호
    • /
    • pp.823-830
    • /
    • 2008
  • Rhodamine B(RhB) 탈색에 대한 광전기촉매 공정의 적용가능성을 분말 TiO$_2$를 충전한 슬러리 광전기촉매 반응기에서 연구하였다. 광전기촉매 공정의 반응기 시스템은 분말 TiO$_2$, Pt 전극 및 3개의 8 W UV-C 등으로 구성되어 있다. 전류, 전해질, 공기 유량 및 전극 재질과 같은 운전 인자의 영향을 고찰하였다. 광전기촉매 공정의 최적 광촉매 량과 전류는 각각 0.4 g/L과 0.02A이었다. 광촉매 공정과 전기분해 단독 공정에 의해 분해되는 RhB의 합보다 광전기촉매 공정에 의해 더 빨리 분해되었는데, 광촉매 공정과 전기분해 공정의 결합에 의한 시너지 효과를 나타내는 것으로 사료되었다. 광전기촉매 공정은 공기 유량에 의해 영향을 받는 것으로 나타났고 최적 공기 유량은 2 L/min이었다. RhB 탈색에 대한 전극 재질과 NaCl 효과는 본 실험범위에서는 크지 않은 것으로 나타났다.

Biohydrogen production from engineered microalgae Chlamydomonas reinhardtii

  • Kose, Ayse;Oncel, Suphi S.
    • Advances in Energy Research
    • /
    • 제2권1호
    • /
    • pp.1-9
    • /
    • 2014
  • The green microalgae Chlamydomonas reinhardtti is well-known specie in the terms of $H_2$ production by photo fermentation and has been studying for a long time. Although the $H_2$ production yield is promising; there are some bottlenecks to enhance the yield and efficiency to focus on a well-designed, sustainable production and also scaling up for further studies. D1 protein of photosystem II (PSII) plays an important role in photosystem damage repair and related to $H_2$ production. Because Chlamydomonas is the model algae and the genetic basis is well-studied; metabolic engineering tools are intended to use for enhanced production. Mutations are focused on D1 protein which aims long-lasting hydrogen production by blocking the PSII repair system thus $O_2$ sensitive hydrogenases catalysis hydrogen production for a longer period of time under anaerobic and sulfur deprived conditions. Chlamydomonas CC124 as control strain and D1 mutant strains(D240, D239-40 and D240-41)are cultured photomixotrophically at $80{\mu}mol\;photons\;m^{-2}s^{-1}$, by two sides. Cells are grown in TAP medium as aerobic stage for culture growth; in logarithmic phase cells are transferred from aerobic to an anaerobic and sulfur deprived TAP- S medium and 12 mg/L initial chlorophyll content for $H_2$ production which is monitored by the water columns and later detected by Gas Chromatography. Total produced hydrogen was $82{\pm}10$, $180{\pm}20$, $196{\pm}20$, $290{\pm}30mL$ for CC124, D240, D239-40, D240-41, respectively. $H_2$ production rates for mutant strains was $1.3{\pm}0.5mL/L.h$ meanwhile CC124 showed 2-3 fold lower rate as $0.57{\pm}0.2mL/L.h$. Hydrogen production period was $5{\pm}2days$ for CC124 and mutants showed a longer production time for $9{\pm}2days$. It is seen from the results that $H_2$ productions for mutant strains have a significant effect in terms of productivity, yield and production time.

Sol-gel법을 이용한 백색도가 높은 가시광 응답형 N-doped TiO2 제조 및 특성 평가 연구 (Preparation and Characterization of Visible Light-Sensitive N-doped TiO2 Using a Sol-gel Method)

  • 이나리;유리;김태관;피재환;김유진
    • 한국분말재료학회지
    • /
    • 제24권6호
    • /
    • pp.477-482
    • /
    • 2017
  • Nitrogen-doped titanium dioxide (N-doped $TiO_2$) is attracting continuously increasing attention as a material for environmental photocatalysis. The N-atoms can occupy both interstitial and substitutional positions in the solid, with some evidence of a preference for interstitial sites. In this study, N-doped $TiO_2$ is prepared by the sol-gel method using $NH_4OH$ and $NH_4Cl$ as N ion doping agents, and the physical and photocatalytic properties with changes in the synthesis temperature and amount of agent are analyzed. The photocatalytic activities of the N-doped $TiO_2$ samples are evaluated based on the decomposition of methylene blue (MB) under visible-light irradiation. The addition of 5 wt% $NH_4Cl$ produces the best physical properties. As per the UV-vis analysis results, the N-doped $TiO_2$ exhibits a higher visible-light activity than the undoped $TiO_2$. The wavelength of the N-doped $TiO_2$ shifts to the visible-light region up to 412 nm. In addition, this sample shows MB removal of approximately 81%, with the whiteness increasing to +97 when the synthesis temperature is $600^{\circ}C$. The coloration and phase structure of the N-doped $TiO_2$ are characterized in detail using UV-vis, CIE Lab color parameter measurements, and powder X-ray diffraction (XRD).

Electrochemical Synthesis of Red Fluorescent Silicon Nanoparticles

  • Choi, Jonghoon;Kim, Kyobum;Han, Hyung-Seop;Hwang, Mintai P.;Lee, Kwan Hyi
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.35-38
    • /
    • 2014
  • Herein, we report on the preparation of red fluorescent Si nanoparticles stabilized with styrene. Nano-sized Si particles emit fluorescence under UV excitation, which could be used to open up new applications in the fields of optics and semi-conductor research. Unfortunately, conventional methods for the preparation of red fluorescent Si nanoparticles suffer from the lack of a fully-established standard synthesis protocol. A common initial approach during the preparation of semi-conductors is the etching of crystalline Si wafers in a HF/ethanol/$H_2O$ bath, which provides a uniformly-etched surface of nanopores amenable for further nano-sized modifications via tuning of various parameters. Subsequent sonication of the etched surface crumbles the pores on the wafer, resulting in the dispersion of particles into the solution. In this study, we use styrene to occupy these platforms to stabilize the surface. We determine that the liberated silicon particles in ethanol solution interact with styrene, resulting in the substitution of Si-H bonds with those of Si-C as determined via UV photo-catalysis. The synthesized styrene-coated Si nanoparticles exhibit a stable, bright, red fluorescence under excitation with a 365 nm UV light, and yield approximately 100 mg per wafer with a synthesis time of 2 h. We believe this protocol could be further expanded as a cost-effective and high-throughput standard method in the preparation of red fluorescent Si nanoparticles.