Color Removal of Rhodamine B by Photoelectrochemical Process using Powder TiO$_2$

분말 광촉매를 이용한 광전기화학 공정에서 Rhodamine B의 색 제거

  • Kim, Dong-Seog (Department of Environmental Science, Catholic University of Daegu) ;
  • Park, Young-Seek (Department of Health & Environmental, Daegu University)
  • 김동석 (대구가톨릭대학교 환경과학과) ;
  • 박영식 (대구대학교 보건과학부)
  • Published : 2008.08.31

Abstract

The feasibility study for the application of the photoelectrocatalytic decolorization of Rhodamine B(RhB) was performed in the slurry photoelectrochemical reactor with powder TiO$_2$. The photoelectrocatalytic process was consisted of powder TiO$_2$, Pt electrode and three 8 W UV-C lamps. The effects of operating conditions, such as current, electrolyte, air flow rate and electrode material were evaluated. The experimental results showed that optimum TiO$_2$ dosage and current in photoelectrocatalytic process were 0.4 g/L and 0.02 A, respectively. It was found that the RhB could be degraded more efficiently by this photoelectrocatalytic process than the sum of the two individual oxidation processes(photocatalytic and electrolytic process). It demonstrated a synergetic effect between the photo- and electrochemical catalysis. Photoelectrocatalytic process was affected to air flow rate and optimum air flow rate was 2 L/min. The electrode material and NaCl effect of decolorization of RhB were not significant within the experiment conditions.

Rhodamine B(RhB) 탈색에 대한 광전기촉매 공정의 적용가능성을 분말 TiO$_2$를 충전한 슬러리 광전기촉매 반응기에서 연구하였다. 광전기촉매 공정의 반응기 시스템은 분말 TiO$_2$, Pt 전극 및 3개의 8 W UV-C 등으로 구성되어 있다. 전류, 전해질, 공기 유량 및 전극 재질과 같은 운전 인자의 영향을 고찰하였다. 광전기촉매 공정의 최적 광촉매 량과 전류는 각각 0.4 g/L과 0.02A이었다. 광촉매 공정과 전기분해 단독 공정에 의해 분해되는 RhB의 합보다 광전기촉매 공정에 의해 더 빨리 분해되었는데, 광촉매 공정과 전기분해 공정의 결합에 의한 시너지 효과를 나타내는 것으로 사료되었다. 광전기촉매 공정은 공기 유량에 의해 영향을 받는 것으로 나타났고 최적 공기 유량은 2 L/min이었다. RhB 탈색에 대한 전극 재질과 NaCl 효과는 본 실험범위에서는 크지 않은 것으로 나타났다.

Keywords

References

  1. An, T., Li, G., Zhu, X., Fu, J., Sheng, G., and Kun, Z., 'Photoelectrocatalytic degradation of oxalic acid in aqueous phase with a novel three-dimensional electrode-hollow quartz tube photoelectrocatalytic reactor,' Appl. Catal., A: General, 279, 247-256(2005) https://doi.org/10.1016/j.apcata.2004.10.033
  2. Li, G., Qu, J., Zhang, X., Liu, H., and Liu, H., 'Electrochemically assisted photocatalytic degradation of Orange II: influence of initial pH values,' J. Mol. Catal. A: Chemical, 259, 238-244(2006) https://doi.org/10.1016/j.molcata.2006.06.038
  3. Kunz, A., Peralta-Zamora, P., de Moraes, G., and Duran, N., 'Novas Tendencias no tratamento de efluentes texeis,' Quimi. Nova, 25(1), 78-82(2002) https://doi.org/10.1590/S0100-40422002000100014
  4. Catanho, M., Geoffory, R. P. M., and Motheo, A. J., 'Photoelectrochemical treatment of the dye reactive red 198 using DSA electrodes,' Appl. Catal. B: Environ., 62, 193-200(2006) https://doi.org/10.1016/j.apcatb.2005.07.011
  5. Robinson, T., McMullan, G., Marchant, R., and Nigam, P., 'Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative,' Bioresour. Technol., 77(3), 247-255(2001) https://doi.org/10.1016/S0960-8524(00)00080-8
  6. Macedo, L. C., Zaia, D. A. M., Moore, G. J., and de Santana, H., 'Degradation of leather dye on $TiO_2$: a study of applied experimental parameters on photoelectrocatalysis,' J. Photochem. Photobiol. A: Chem., 185, 86-93(2007) https://doi.org/10.1016/j.jphotochem.2006.05.016
  7. Zhang, M., An, T., Hu, X., Wang, C., Sheng, G., and Fu, J., 'Preparation and photocatalytic properties of a nanometer ZnO-$SnO_2$ coupled oxide,' Appl. Catal. A: General, 260, 215-222(2004) https://doi.org/10.1016/j.apcata.2003.10.025
  8. Choi, W., Termin, A., and Hoffmann, M. R., 'The role of metal ion dopants in quantum-sized $TiO_2$: correlation between photoreactivity and charge carrier recombination dynamics,' J. Phys. Chem., 98(51), 13669-13679(1994) https://doi.org/10.1021/j100102a038
  9. Wang, C. M., Heller, A., and Gerischer, H., 'Palladium catalysis of $O_2$ reduction by electrons accumulated on $TiO_2$ particles during photoassisted oxidation of organic compounds,' J. Am. Chem. Soc., 114(13), 5230-5234(1992) https://doi.org/10.1021/ja00039a039
  10. Pelegrini, R., Peralta-Zamora, P., de Andrade, A. R. R., and Reyes, J., 'Electrochemically assisted photocatalytic degradation of reactive dyes,' Appl. Catal. B: Environ., 22, 83-90(1999) https://doi.org/10.1016/S0926-3373(99)00037-5
  11. Rodriguez, J., Gomez, M., Lindquist, S.-E., and Granqvist, C. G., 'Photo-electrocatalytic degradation of 4-chlorophenol over sputter deposited Ti oxide films,' Thin Solid Films, 360, 250-255(2000) https://doi.org/10.1016/S0040-6090(99)01080-9
  12. An, T., Xiong, Y., Li, C., and Zhu, X., 'Synergetic effect in degradation of formic acid using a new photoelectrochemical reactor,' J. photochem. photobiol. A: Chem., 152, 155-165(2002) https://doi.org/10.1016/S1010-6030(02)00211-3
  13. Xizoli, Y., Huixiang, S., and Dahui, W., 'Photoelectrocatalytic degradation of phenol using a $TiO_2$/Ni thin-film electrode,' Korean J. Chem. Eng., 20(4), 679-684(2003) https://doi.org/10.1007/BF02706907
  14. Matos, J., Laine, J., and Herrmann, J-M., 'Association of activated carbons of different origins with titania in the photocatalytic purification of water,' Carbon, 37, 1870-1872(1999) https://doi.org/10.1016/S0008-6223(99)00198-0
  15. 김광욱, 이일희, 김영준, 이미혜, 신동우, $TiO_2$ 박막 코팅전극체를 이용한 광촉매-전해 반응기에서 4CP 분해 연구,' 화학공학, 41(2), 160-166(2003)
  16. Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W., 'Environmental applications of semiconductor photocatalysis,' Chem. Rev., 95, 69-96(1995) https://doi.org/10.1021/cr00033a004
  17. 류완석, 석진국, 임경호, 주대성, '전기응집부상 원리를 이용한 도시하수 처리시스템에 관한 연구,' 대한환경공학회 추계학술발표회 논문집, 886-890(2003)
  18. 김동석, 박영식, '불용성 전극을 이용한 Rhodamine B의 전기화학적 탈색,' 한국물환경학회지, 23(3), 377-384(2007)
  19. 박영식, 김동석, '전기화학적 소독에 의한 Legionella pneumophila 불활성화,' 한국물환경학회지, 23(5), 613-619(2007)
  20. Abdullah, M., Low, G. K., and Matthews, R. W., 'Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide,' J. Phys. Chem., 94, 6820-6825(1990) https://doi.org/10.1021/j100380a051
  21. An, T. Li, G., Zhu, X., Fu, J., Sheng, G., and Kun, Z., 'Photoelectrocatalytic degradation of oxalic acid in aqueous phase with a novel three-dimensional electrode-hollow quartz tube photoelectrocatalytic reactor,' Appl. Catal. A; General, 279, 247-256(2005) https://doi.org/10.1016/j.apcata.2004.10.033
  22. Zanoni, M. V. B., Sene, J. J., and Anderson, M. A., 'Photoelectrocatalytic degradation of Remazol Brillian Orange 3R on titanium dioxide thin-film electrodes,' J. photochem. photobiol. A: Chem., 157, 55-63(2003) https://doi.org/10.1016/S1010-6030(02)00320-9
  23. Li, G., An, T., Chen, J., Chen, G., Fu, J., Chen, F., Zhang, S., and Zhao, H., 'Photoelectrocatalytic decontamination f oilfield produced wastewater containing refractory organic pollutants in the presence of high concentration of chloride ions,' J. Hazard. Mater., B138, 392-400(2006)
  24. Quan, X., Chen, Su, J., Chen, J., and Chen, G., 'Synergetic degradation of 2,4-D by integrated photo- and electrochemical catalysis on a Pt doped $TiO_2$/Ti electrode,' Separation and Purification Technology, 34, 73-79(2004) https://doi.org/10.1016/S1383-5866(03)00177-1
  25. Zhang, W., An, T., Xiao, X., Fu, J., Sheng, G., Cui, M., and Li, G., 'Photoelectrocatalytic degradation of reactive brilliant orange K-R in a new continuous flow photoelectrocatalytic reactor,' Appl. Catal. A: General, 255, 221-229(2003) https://doi.org/10.1016/S0926-860X(03)00593-3
  26. Nam, W. S., Kim, J. M., and Han, G. Y., 'Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor,' Chemosphere, 47, 1019-1024(2002) https://doi.org/10.1016/S0045-6535(01)00327-7
  27. 박영식, 김동석, 'Ru-흑연 전극을 이용한 염료의 색 제거,' 한국환경과학회 추계학술발표대회, 16(2) 425-428(2007)