• Title/Summary/Keyword: Photo-Fenton

Search Result 42, Processing Time 0.024 seconds

Decolorization of Rhodamine B by Fenton, Fonton-like and Photo-Fenton-like Oxidation (펜톤, 펜톤-유사 및 광-펜톤-유사 반응을 이용한 Rhodamine B의 탈색)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.2 s.95
    • /
    • pp.150-157
    • /
    • 2007
  • The chemical and photochemical decolorization of Rhodamine B (RhB) in water has been carried out by Fenton, Fenton-like and photo-Fenton-like process. The effect of applied $H_2O_2,\;Fe^{2+}$ dosage (Fenton process), $H_2O_2,\;Fe^{\circ}$ dosage (Fenton-like and photo-Fenton-like process), UV light power (photo-Fenton-like process) pH (all processes) have been studied. The results obtained showed that more than 98% of color removal was obtained for the RhB solutions in every process. However, Fenton-like process was not suitable for the color removal of RhB because Fenton-like process was required much more reagents than Fenton and photo-Fenton-like process. The Fenton and photo-Fenton-like process showed similar reagents need. Optimum pH for three processes in this study is about pH 3. The relative order of sensitivity for pH of each process was: Fenton-like > photo-Fenton-like > Fenton.

Decolorization of Rhodamine B by Photo-Fenton Oxidation (광-펜톤 산화반응을 이용한 Rhodamine B의 탈색)

  • Park, Young-Seek
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.274-280
    • /
    • 2007
  • The photochemical decolorization of Rhodamine B (RhB) in water has been carried out by photo-Fenton process. The effect of applied $H_2O_2$, $Fe^{2+}$ dose, solution pH and UV dose have been studied. The influence of constituent processes of photo-Fenton such as UV, $H_2O_2$ and Fenton has been investigated. Comparison of RhB removal was made between the photo-Fenton and $UV/H_2O_2$ process. The results obtained showed that the optimum dosage of $Fe^{2+}$ and $H_2O_2$ were 0.0031 mmol and 0.625 mol, respectively. pH 3 is found to be the optimum pH of for photo-Fenton process. pH and UV dose strongly influenced the decolorization of RhB in photo-Fenton process. The photo-Fenton and $UV/H_2O_2$ processes showed similar decolorization and seem to be appropriate for the decolorization of dye wastewater.

Degradation Of 4-chlorophenol By Photo-Fenton Process and Fenton Process in Aqueous Solutions (광펜톤반응과 펜톤반응에 의한 수중 클로로페놀 분해비교연구)

  • Kim, Hyun-Seung;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.463-469
    • /
    • 2011
  • The degradation of 4-chlorophenol by various AOPs(Advanced Oxidation Processes) including the Fenton and the photo-Fenton process has been examined. In sole Fe, UV or $H_2O_2$ process without combination, low removal efficiencies have been achieved. But the photo-Fenton process showed higher removal efficiency for degradation of 4-chlorophenol than those of other AOPs including the Fenton process. Generally more hydrogen peroxide was required to achieve higher removal efficiencies of 4-CP at constant dosage of $FeSO_4$ in both of the Fenton and the photo-Fenton processes. Based on the results, The photo-Fenton process is proposed to be the most efficient alternative for degradation of 4-chlorophenol among the processes studied in this research.

Degradation of 2-Chlorophenol in the Aqueous Phase by a Photo-Fenton Process (광펜톤 반응에 의한 수중 2-클로로페놀 분해특성연구)

  • Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.779-786
    • /
    • 2012
  • The degradation of 2-chlorophenol(2-CP) by various AOPs(Advanced Oxidation Processes) including the photo-Fenton process has been examined. In sole $Fe^{2+}$, UV or $H_2O_2$ process without combination, low removal efficiencies have been achieved. But the photo-Fenton process showed higher removal efficiency for degradation of 2-chlorophenol than those of other AOPs including the Fenton process and the UV processes. In the photo-Fenton process, the optimal experimental conditions of 2-chlorophenol degradation were obtained at pH 3 and the $Fe^{2+}/H_2O_2$molar ratio of 1. Also the 2-chlorophenol removal efficiency increased with decreasing of the initial 2-chlorophenol concentration. 3-chlorocatechol and chlorohydroquinone were identified as photo-Fenton reaction intermediates, and a degradation pathway of 2-chlorophenol in the aqueous phase during the photo-Fenton reaction was proposed.

Degradation of 4-Chlorophenol by a Photo-Fenton Process with Continuous Feeding of Hydrogen Peroxide (과산화수소 연속주입식 광펜톤산화공정에 의한 4-염화페놀 분해연구)

  • Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • The degradation of 4-chlorophenol(4-CP) by various AOPs(Advanced Oxidation Processes) with continuous feeding of $H_2O_2$, including the ultraviolet/hydrogen peroxide, the Fenton and the photo-Fenton process has been investigated. The photo-Fenton process showed the highest removal efficiency for degradation of 4-chlorophenol than those of other AOPs including the Fenton process and the combined UV process with continuous feeding of $H_2O_2$. In the photo-Fenton process, the optimal experimental condition for 4-CP degradation was obtained at pH 3. Also the 4-CP removal efficiency increased with decreasing of the initial 4-CP concentration. 4-chlorocatechol and 4-chlororesorcinol were identified as photo-Fenton reaction intermediates, and the degradation pathways of 4-CP in the aqueous phase during the photo-Fenton reaction were proposed.

Degradation of 2,3-dichlorophenol by a Photo-Fenton Process with Continuous Pump-Feeding of Hydrogen Peroxide (동력펌프주입식 광펜톤시스템에 의한 2,3-디염화페놀 분해특성 연구)

  • Kim, Il-Kyu
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.84-90
    • /
    • 2014
  • The degradation of 2,3-dichlorophenol(2,3-diCP) by various advanced oxidation systems with continuous feeding of hydrogen peroxide including the ultraviolet/hydrogen peroxide, the Fenton and the photo-Fenton process has been conducted. The highest removal efficiency for 2,3-diCP in the aqueous phase was obtained by the photo-Fenton process among the advanced oxidation systems. In the photo-Fenton process, The removal efficiency of 2,3-diCP decreased with increasing pH in the range of 3 to 6, and it decreased with increasing initial concentration. As the intermediates of 2,3-diCP by photo-fenton reaction, 3,4-chlorocatechol and 2,3-dichlorohydroquinone were detected, thus the degradation pathways were proposed.

Comparative Studies Of the $UV/H_2O_2,\;UV/TiO_2/H_2O_2$ and Photo-Fenton Oxidation for Degradation of Citric Acid ($UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton 산화방법에 의한 Citric Acid의 분해효율 비교)

  • Seo, Min-Hye;Cho, Soon-Haing;Ha, Dong-Yun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.429-437
    • /
    • 2006
  • To establish the efficient treatment technology of chemical cleaning wastewater from power plant, several AOPs($UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation) were investigated. Treatment efficiencies and the electrical energy requirements based on the EE/O parameter(the electrical energy, required per order of pollutant removal in $1m^3$ wastewater) were evaluated. TOC removal efficiencies of $UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation at the optimum conditions were 95.5%, 92.3%, 91.5%, respectively. The electrical energy requirements of $UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation were $11.26kWh/m^3,\;3.85kWh/m^3,\;0.799kWh/m^3$, respectively. From these results, it could be concluded that all of the three oxidation processes were effective for the degradation of citric acid. Considering the treatment efficiency and economical aspect, photo-Fenton oxidation was the most efficient treatment process among the three processes tested.

A Study on the Dye-Wastewater Treatment by Fenton and Photo-Fenton Oxidation Process (Fenton 및 Photo-Fenton 산화공정을 이용한 염색 폐수의 처리에 관한 연구)

  • 조일형;고영림;이소진;이홍근;조경덕
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.29-37
    • /
    • 2000
  • Fenton’s oxidation process is one of the most commonly applied processes to the wastewater which cannot be treated by conventional biological treatment processes. However, it is necessary to minimize the cost of Fenton’s oxidation treatment by modifying the treatment processes or other means of chemical treatment. So, as a method for the chemical oxidation of biorefractory or nonbiodegradable organic pollutants, the Photo-Fenton-Reaction which utilizes iron(11)salt. $H_2O$$_2$ and UV-light simultaneously has been proprosed. Therfore, the purpose of this study is to test a removal efficiency of dye-wastewater and treatment cost with Fenton’s and Photo-Fenton’s oxidation process. The Fe(11)/$H_2O$$_2$ reagent is referred to as the fenton’s reagent. which produces hydroxy radicals by the interaction of Fe(11) with $H_2O$$_2$. In this exoeriment, the main results are as followed; 1. The Fenton oxidation was most efficient in the pH range of 3-5. The optimal condition for initial reaction pH was 3.5 for the high CO $D_{Cr}$ & TOC-removal efficiency. 2. The removal efficiency of TOC and CO $D_{Cr}$ increased up to the molar ration between ferrate and hydrogen peroxide 0.2:1, but above that ratio removal efficiency hardly increased. 3. The highest removal efficiency of TOC and CO $D_{Cr}$ were showed when the mole ration of ferrate to hydrogen peroxide was 0.2:3.4. 4. Without pretreatment process, photo-fenton oxidation which was not absorbed UV light was not different to fenton oxidation. 5. And Fenton oxidtion with pretreatment process was similar to Fenton oxidation in the absence of coagulation, the proper dosage of F $e^{2+}$: $H_2O$$_2$ was 0.2:1 for the optimal removal efficiency of TOC or CO $D_{Cr}$ .6. Also, TOC & CO $D_{Cr}$ removal efficiency in the photo-fenton oxidation with pretreatment was increased when UV light intensity enhanced.7. Optimum light intensity in the range from 0 to 1200 W/$m^2$ showed that UV-intensity with 1200W/$m^2$ was the optimum condition, when F $e_{2+}$:$H_2O$$_2$ ratio for the highest decomposition was 0.2:2.5.EX>$_2$ ratio for the highest decomposition was 0.2:2.5.

  • PDF

Optimal Condition of Operation Parameter for Livestock Wastewater Treatment using Photo-Fenton Process (PHOTO-FENTON 공정을 이용한 축산폐수처리시 운전인자의 최적조건)

  • Park, Jae-Hong;Chang, Soon-Woong;Cho, Il-Hyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.284-288
    • /
    • 2005
  • In this study, photochemical advanced oxidation processes (AOPs) utilizing the Photo Fenton reaction ($Fe^{2+}+H_2O_2+UV$) were investigated in lab-scale experiments for the treatment of livestock wastewater. For the experimets, the livestock wastewater was pretreated by coagulation with $3,000mg/L\;FeCl_3$. The optimal conditions for Photo-Fenton processes were determined: pH was 5, the concentration of ferrous ion (Fe II) was 0.01 M. The concentration of hydrogen peroxide was 0.1 M, and molar ratio ($Fe^{2+}/H_2O_2$) was 0.1. The optimal reaction time was 80 min. Under the optimal condition of Photo-Fenton process, chemical oxygen demand (COD), color and fecal coliform removal efficiencies were about 79, 70, and 99.4%, respectively and sludge production was 7.5 mL from 100 mL of solution.

A Study on the degradation of Lindane in water by a Photo-Fenton process and a UV/$H_2O_2$ process (Photo-Fenton 공정과 UV/$H_2O_2$ 공정을 이용한 Lindane의 분해특성 비교 연구)

  • Lee, Ju-Hyun;Choi, Hye-Min;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.1
    • /
    • pp.109-117
    • /
    • 2010
  • In the present study, the degradation characteristics of Lindane by Advanced Oxidation Processes(UV/$H_2O_2$, Photo-Fenton process) were studied. The degradation efficiency of Lindane in aqueous solution was investigated at various initial pH values, Fenton's reagent concentrations and initial concentrations of Lindane. GC-ECD was used to analyze lindane. Lindane has not been degraded without application of AOPs over two hours. But, approximately 5% of lindane was degraded with UV or $H_2O_2$ alone. Lindane with UV/$H_2O_2$ process showed approximately 7% higher removal efficiency than $H_2O_2$ process. In the UV/$H_2O_2$ process, the pH values did not affect the removal efficiency. The optimal mole ratio of $H_2O_2/Fe^{2+}$ for lindane degradation is about 1.0 in Photo-Fenton process. Also, the experimental results showed that lindane removal efficiency increased with the decrease of initial concentration of lindane. Under the same conditions, the order lindane of removal efficiency is as following : Photo-Fenton process > UV/$H_2O_2$ process > $H_2O_2$ process. In addition, intermediate products were identified by GC-MS techniques. Than PCCH(Pentachlorocyclohexene) was identified as a reaction intermediate of the Photo-Fenton process.