• 제목/요약/키워드: Photo degradation

검색결과 192건 처리시간 0.027초

SiO2 완충층 두께에 따른 비정질 InGaZnO Pseudo-MOS Field Effect Transistor의 신뢰성 평가 (Effect of SiO2 Buffer Layer Thickness on the Device Reliability of the Amorphous InGaZnO Pseudo-MOS Field Effect Transistor)

  • 이세원;황영현;조원주
    • 한국전기전자재료학회논문지
    • /
    • 제25권1호
    • /
    • pp.24-28
    • /
    • 2012
  • In this study, we fabricated an amorphous InGaZnO pseudo-MOS transistor (a-IGZO ${\Psi}$-MOSFET) with a stacked $Si_3N_4/SiO_2$ (NO) gate dielectric and evaluated reliability of the devices with various thicknesses of a $SiO_2$ buffer layer. The roles of a $SiO_2$ buffer layer are improving the interface states and preventing degradation caused by the injection of photo-created holes because of a small valance band offset of amorphous IGZO and $Si_3N_4$. Meanwhile, excellent electrical properties were obtained for a device with 10-nm-thick $SiO_2$ buffer layer of a NO stacked dielectric. The threshold voltage shift of a device, however, was drastically increased because of its thin $SiO_2$ buffer layer which highlighted bias and light-induced hole trapping into the $Si_3N_4$ layer. As a results, the pseudo-MOS transistor with a 20-nm-thick $SiO_2$ buffer layer exhibited improved electrical characteristics and device reliability; field effective mobility(${\mu}_{FE}$) of 12.3 $cm^2/V{\cdot}s$, subthreshold slope (SS) of 148 mV/dec, trap density ($N_t$) of $4.52{\times}1011\;cm^{-2}$, negative bias illumination stress (NBIS) ${\Delta}V_{th}$ of 1.23 V, and negative bias temperature illumination stress (NBTIS) ${\Delta}V_{th}$ of 2.06 V.

Control of Plasma Characteristic to Suppress Production of HSRS in SiH4/H2 Discharge for Growth of a-Si: H Using Global and PIC-MCC Simulation

  • 원임희;권형철;홍용준;이재구
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.312-312
    • /
    • 2011
  • In SiH4/H2 discharge for growth process of hydrogenated amorphous silicon (a-Si:H), silane polymers, produced by SiH2 + Sin-1H2n ${\rightarrow}$ SinH2n+2, have no reactivity on the film-growing surface. However, under the SiH2 rich condition, high silane reactive species (HSRS) can be produced by electron collision to silane polymers. HSRS, having relatively strong reactivity on the surface, can react with dangling bond and form Si-H2 networks which have a close correlation with photo-induced degradation of a-Si:H thin film solar cell [1]. To find contributions of suggested several external plasma conditions (pressure, frequency and ratio of mixture gas) [2,3] to suppressing productions of HSRS, some plasma characteristics are studied by numerical methods. For this study, a zero-dimensional global model for SiH4/H2 discharge and a one-dimensional particle-in-cell Monte-Carlo-collision model (PIC-MCC) for pure SiH4 discharge have been developed. Densities of important reactive species of SiH4/H2 discharge are observed by means of the global model, dealing 30 species and 136 reactions, and electron energy probability functions (EEPFs) of pure SiH4 discharge are obtained from the PIC-MCC model, containing 5 charged species and 15 reactions. Using global model, SiH2/SiH3 values were calculated when pressure and driving frequency vary from 0.1 Torr to 10 Torr, from 13.56 MHz to 60 MHz respectively and when the portion of hydrogen changes. Due to the limitation of global model, frequency effects can be explained by PIC-MCC model. Through PIC-MCC model for pure SiH4, EEPFs are obtained in the specific range responsible for forming SiH2 and SiH3: from 8.75 eV to 9.47 eV [4]. Through densities of reactive species and EEPFs, polymerization reactions and production of HSRS are discussed.

  • PDF

나노광촉매가 코팅된 실리카 비드의 재생 연구 (Recycling Technique of Nano TiO2-Coated Silica-bead)

  • 도영웅;하진욱
    • 한국산학기술학회논문지
    • /
    • 제10권11호
    • /
    • pp.3269-3273
    • /
    • 2009
  • 본 연구에서는 수용액 내의 오염물질 분해를 위하여 개발한 광촉매가 코팅된 실리카 비드의 광분해반응 사용에 따른 활성저하 문제를 해결하기 위하여 반응에 사용한 비드의 활성을 향상시킬 수 있는 재생 방법에 관한 실험을 수행하였다. 비드의 재생방법으로 표면 세정법을 선택하였으며, 세정액으로는 물(증류수), 계면활성제, 아세톤, 에탄올의 세정력이 서로 다른 4종의 용액을 사용하였다. 재생 과정은 서로 다른 4종의 세정액으로 반응에 사용하여 활성이 떨어진 비드를 세정한 후, 소성온도를 $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$로 달리하여 30분간 처리하였다. 재생 처리과정은 각 1~3회 반복 수행하였으며, 서로 다른 조건에서 재생된 비드의 활성은 수용액 내의 methylene blue 광분해율로 측정하였다. 연구결과, 재생한 비드의 활성은 아세톤으로 세정한 후, $100^{\circ}C$에서 30분간 소성하였을 때 가장 우수한 것으로 나타났다.

Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

  • Khan, Gulzar;Kim, Young Kwang;Choi, Sung Kyu;Han, Dong Suk;Abdel-Wahab, Ahmed;Park, Hyunwoong
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1137-1144
    • /
    • 2013
  • $TiO_2$ composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of $H_2$ production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher $H_2$ production as compared to bare $TiO_2$. Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of $TiO_2$ are discussed in terms of physicochemical properties of carbon materials, coupling states of $TiO_2$/carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors.

박막태양전지의 광포획 기술 현황 (Current Status in Light Trapping Technique for Thin Film Silicon Solar Cells)

  • 박형식;신명훈;안시현;김선보;봉성재;;;이준신
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.95-102
    • /
    • 2014
  • Light trapping techniques can change the propagation direction of incident light and keep the light longer in the absorption layers of solar cells to enhance the power conversion efficiency. In thin film silicon (Si) solar cells, the thickness of absorption layer is generally not enough to absorb entire available photons because of short carrier life time, and light induced degradation effect, which can be compensated by the light trapping techniques. These techniques have been adopted as textured transparent conduction oxide (TCO) layers randomly or periodically textured, intermediate reflection layers of tandem and triple junction, and glass substrates etched by various patterning methods. We reviewed the light trapping techniques for thin film Si solar cells and mainly focused on the commercially available techniques applicable to textured TCO on patterned glass substrates. We described the characterization methods representing the light trapping effects, texturing of TCO and showed the results of multi-scale textured TCO on etched glass substrates. These methods can be used tandem and triple thin film Si solar cells to enhance photo-current and power conversion efficiency of long term stability.

Photocatalytic Degradation of E. coli and S. aureus by Multi Walled Carbon Nanotubes

  • Sharon, Madhuri;Datta, Suprama;Shah, Sejal;Sharon, Mahesh War;Soga, T.;Afre, Rakesh
    • Carbon letters
    • /
    • 제8권3호
    • /
    • pp.184-190
    • /
    • 2007
  • Carbon Nano Tubes could be either metallic or semi-conducting in nature, depending on their diameter. Its photocatalytic behavior has given an impetus to use it as an anti-microbial agent. More than 95% Escherichia coli and Staphylococcus aureus bacteria got killed when exposed to Carbon Nano Tubes for 30 minutes in presence of sunlight. Carbon Nano Tubes are supposed to have smooth surface on to which it accumulates positive charges when exposed to light. The surface that is non illuminated has negative charge. At the cellular level microorganisms produce negative charges on the cell membrane, Therefore damaging effect of multi walled carbon nano tubes (exposed to light) on the microorganisms is possible. In this paper, photo catalytic killing of microbes by multi walled carbon nano tubes is reported. Killing was due to damage in the cell membrane, as seen in SEM micrographs. Moreover biochemical analysis of membrane as well as total cellular proteins by SDS PAGE showed that there was denaturation of membrane proteins as well as total proteins of both the microbes studied. The killed microbes that showed a decrease in number of protein bands (i.e. due to breaking down of proteins) also showed an increase in level of free amino acids in microbes. This further confirmed that proteins got denatured or broken down into shorter units of amino acids. Increased level of free amino acids was recorded in both the microbes treated with multi walled carbon nano tubes and sunlight.

몽골의 가정용 PV-ES 하이브리드 시스템 개발을 위한 연구 (The Study on Development of PV-ES hybrid system for Mongolian Household)

  • ;;박준형
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1905-1912
    • /
    • 2017
  • In recent years, Ulaanbaatar, a capital of Mongolia has witnessed major problem that air quality reaches hazardous level during the winter season. Coal combustion for heating of every house in "Ger" district is main reason. One way to reduce the air pollution is mass usage of electric heater. However, there are several difficulties such as overload and degradation of transformers and other equipment used in distribution and transmission systems as well as power shortage occurrence in evening peak period due to residential consumption. This study aims to contribute for solving the air pollution and power shortage problem in Mongolia. One possible solution could be distributed generation (DG) with photovoltaic (PV) penetration. In this study, PV with energy storage (ES) hybrid system to reduce peak load is analyzed. We proposed the suitable structure of PV-ES hybrid for Mongolian household, and suggested several operation scenarios. Optimal operation algorithm is carried out based on a comparison aspect from economical, grid impact and PV penetration possibility. The economic analyse shows annual income of 520USD, and has a payback period of 8 years for selected scenario. The proposed PV-ES system structure is verified by experimentation set on the building rooftop in city center. The suggested scenario is planned to apply for system in further research.

Anti-Fogging, Photocatalytic and Self-Cleaning Properties of TiO2-Transparent Coating

  • ;김정식
    • 한국재료학회지
    • /
    • 제31권1호
    • /
    • pp.8-15
    • /
    • 2021
  • Transparent, photocatalytic, and self-cleaning TiO2 thin film is developed by TiO2 sol-gel coating on glass and polycarbonate (PC) substrates. Acetyl acetone (AcAc) suppresses the precipitation of TiO2 by forming a yellowish (complex) transparent sol-gel. XPS analysis confirms the presence of Ti2p and O1s in the thin films on glass and PC substrates. The TiO2-sol is prepared by stabilizing titanium (IV) isopropoxide (TTIP) with diethylamine and methyl alcohol. The addition of AcAcsilane coupling solution to the TiO2-sol instantaneously turns to yellowish color owing to the complexing of titanium with AcAc. The AcAc solution substantially improves the photocatalytic property of the TiO2 coating layer in MB solutions. The coated TiO2 film exhibits super hydrophilicity without and with light irradiation. The TiO2 thin film stabilized by adding 8.7 wt% AcAc shows the highest photo-degradation for methylene blue (MB) solution under UV light irradiation. Also, the optimum photocatalytic activity is obtained for the 8.7 wt% AcAc-stabilized TiO2 coating layer calcined at 450 ℃. The thin-films on glass exhibit fast self-cleaning from oleic acid contamination within 45 min of UV-light irradiation. The appropriate curing time at 140 ℃ improves the anti-fogging and thermal stability of the TiO2 film coated on PC substrate. The watermark-free PC substrate is particularly beneficial to combat fogging problems of transparent substrates.

Peracetic Acid Treatment as an Effective Method to Protect Wood Discoloration by UV Light

  • PARK, Kyoung-Chan;KIM, Byeongho;PARK, Hanna;PARK, Se-Yeong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권4호
    • /
    • pp.283-298
    • /
    • 2022
  • Wood has always been used for various day-to-day applications such as interior or exterior construction materials, and household products. However, it can undergo photodegradation and discoloration by environmental factors including ultraviolet (UV) light, and thus has shortened its service life. Bleaching or delignification of wood surfaces is a suitable solution to stabilize wood against weathering by UV because these techniques can alter or remove the chromophores in lignin, which is a main factor of wood discoloration. To improve the color stability of wood surface according to the lifespan, surface delignification was conducted using peracetic acid (PAA) and hydrogen peroxide (HP) on the woods of Larix kaempferi and Quercus mongolica. After the PAA treatment, L* increased considerably from 60-70 to 90-95. Furthermore, wood surface color did not change significantly after UV exposure. The color differences (𝜟E*) between before and after PPA treatment of wood showed the 4.8-12.2 of L. kaempferi, and 1.7-3.7 of Q. mongolica, respectively. The lignin-related peaks in Fourier transform infrared spectroscopy (FT-IR) spectra disappeared with increased duration of PAA treatment. These results confirmed that the lignin component was partially or completely removed after the PAA treatment; the color differences (𝜟E*) clearly showed that there was a reduction in redness (a*) and yellowness (b*), and an increase in lightness (L*) owing to the removal of lignin. Based on these results, this study demonstrated that the partial removal of lignin from wood surfaces is a fundamental method for resolving photo-degradation.

TiO2 졸-겔 코팅 막에 의한 Humic Acid의 광분해 -화학적 산화법에 의한 부식산의 분해처리 기술에 관한 연구 (II)- (The Photocatalytic Degradation of Humic Acid by TiO2 Sol-Gel Coating -Characterization of Humic Acid in the Chemical Oxidation Treatment (II)-)

  • 석상일;안복엽;서태수;이동석
    • 대한환경공학회지
    • /
    • 제22권4호
    • /
    • pp.765-773
    • /
    • 2000
  • $TiO_2$ 코팅매체를 이용한 humid acid의 광분해 특성을 조사하였다. $TiO_2$ 코팅은 $TiOCl_2$ 수용액을 암모니아수로 침전시킨 겔을 과산화수소로 용해한 용액 혹은 졸이나 titanium tetraisopropoxide (TTIP)의 가수분해로부터 제조한 졸을 이용하여 dip-coating법으로 제조하였다. Titanium peroxo 용액을 열처리하여 제조한 졸을 이용한 코팅층은 X-선 회절 분석으로부터 $25^{\circ}C{\sim}500^{\circ}C$ 온도 범위에서 모두 anatase형 결정구조를 가지고 있었다. 반면에 TTIP의 가수분해로 생성된 졸로부터 만든 코팅막은 $400^{\circ}C$ 이상에서 anatase의 결정형이 나타났다. 이로부터 titanium peroxo 용액을 열처리하여 제조한 졸은 내열성 및 비내열성 기판에도 결정성 $TiO_2$ 코팅층을 만들 수 있는 장점이 있다. 코팅막의 두께 및 균일성은 인출속도, 코팅졸의 농도 및 코팅 횟수에 영향을 받았으며, 코팅막의 두께에 따라 다양한 간섭색상을 나타냈다. 0.2M 졸을 이용하여 인출속도 2.5cm/min로 2회 코팅했을 경우, 약 50nm 두께의 투명하면서도 균일한 흐린 남색을 띠는 $TiO_2$ 코팅막을 얻을 수 있었다. 이상의 방법으로 직경 0.3cm의 유리구슬에 $TiO_2$ 코팅막을 제조한 후 $580cm^3$의 반응조를 사용하여 $UV/H_2O_2$ 공정으로 humic acid를 40분 동안 광반응시킨 결과, 초기 시료의 $COD_{cr}$ (40ppm) 을 약 85% 이상, 흡광물질을 약 95% 이상 제거하였다.

  • PDF