• Title/Summary/Keyword: Phosphorylation

Search Result 2,500, Processing Time 0.03 seconds

12-O-Tetradecanoylphorbol-13-Acetate Induces Keratin 8 Phosphorylation and Reorganization via Expression of Transglutaminase-2

  • Lee, Eun Ji;Park, Mi Kyung;Kim, Hyun Ji;Kang, June Hee;Kim, You Ri;Kang, Gyeoung Jin;Byun, Hyun Jung;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.122-128
    • /
    • 2014
  • The stiffness of cancer cells is attributable to intermediate filaments such as keratin. Perinuclear reorganization via phosphorylation of specific serine residue in keratin is implicated in the deformability of metastatic cancer cells including the human pancreatic carcinoma cell line (PANC-1). 12-O-Tetradecanoylphorbol-13-acetate (TPA) is a potent tumor promoter and protein kinase C (PKC) activator. However, its effects on phosphorylation and reorganization of keratin 8 (K8) are not well known. Therefore, we examined the underlying mechanism and effect of TPA on K8 phosphorylation and reorganization. TPA induced phosphorylation and reorganization of K8 and transglutaminase-2 (Tgase-2) expression in a time- and dose-dependent manner in PANC-1 cells. These effects peaked after 45 min and 100 nM of TPA treatment. We next investigated, using cystamine (CTM), Tgase inhibitor, and Tgase-2 gene silencing, Tgase-2's possible involvement in TPA-induced K8 phosphorylation and reorganization. We found that Tgase-2 gene silencing inhibited K8 phosphorylation and reorganization in PANC-1 cells. Tgase-2 gene silencing, we additionally discovered, suppressed TPA-induced migration of PANC-1 cells and Tgase-2 overexpression induced migration of PANC-1 cells. Overall, these results suggested that TPA induced K8 phosphorylation and reorganization via Tgase-2 expression in PANC-1 cells.

PKCθ-Mediated PDK1 Phosphorylation Enhances T Cell Activation by Increasing PDK1 Stability

  • Kang, Jung-Ah;Choi, Hyunwoo;Yang, Taewoo;Cho, Steve K.;Park, Zee-Yong;Park, Sung-Gyoo
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • PDK1 is essential for T cell receptor (TCR)-mediated activation of $NF-{\kappa}B$, and PDK1-induced phosphorylation of $PKC{\theta}$ is important for TCR-induced $NF-{\kappa}B$ activation. However, inverse regulation of PDK1 by $PKC{\theta}$ during T cell activation has not been investigated. In this study, we found that $PKC{\theta}$ is involved in human PDK1 phosphorylation and that its kinase activity is crucial for human PDK1 phosphorylation. Mass spectrometry analysis of wild-type $PKC{\theta}$ or of kinase-inactive form of $PKC{\theta}$ revealed that $PKC{\theta}$ induced phosphorylation of human PDK1 at Ser-64. This $PKC{\theta}$-induced PDK1 phosphorylation positively regulated T cell activation and TCR-induced $NF-{\kappa}B$ activation. Moreover, phosphorylation of human PDK1 at Ser-64 increased the stability of human PDK1 protein. These results suggest that Ser-64 is an important phosphorylation site that is part of a positive feedback loop for human PDK1-$PKC{\theta}$-mediated T cell activation.

Physiological studies on cell division by the technique of synchronous culture of chlorella (I) (클로렐라의 동조배양법에 의한 세포분열의 생리학적 연구 1)

  • 이영녹;이종삼
    • Korean Journal of Microbiology
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 1969
  • Changes in the phosphorylation of Chlorella cells during the life cycle the aulotrophic and micotrophic synchronous culture were followed under the light and dark. 1. In the autotrophic culture of Chlorella the amounts of esterified phosphate compounds of the algal cell under the light increased during the growing period and decreased strikingly in the ripening period showing a peak at the $L_1$ i/-cell stage. 2. TRhe amount of total esterified phosphate compounds of the cell under the dark, however, decreased during the growing period and then kept fairly constnat during the ripening nad division periods showing the greates activity of the oxidative phosphorylation in the early growing stage. 3. It is presumed that the energy requirement of the dividing algal cell in the autotrophic culture is fulfilled prior to the nuclear division mostly by the photosynthetic phosphorylation. 4. In the mixotrophic culture, the amount of esterified phosphate compounds of the algal cells under the light increased during the growing period and decreased during the late ripening and early division periods showing a peak in the $L_2$-cell stage as in the case of the phosphorylation under the dark. 5. The phosphorylation of the fell grown in the glucose medium is more active under the dark than under the light in the stages of the growing and early ripening periods. 6. It is considered that the excess glucose in the algal cell not only promotes the oxidative phosphorylation but also inhibits the photosynthetic phosphorylation of the cell. 7. It is presumed that the energy requirement of the dividing algal cell in the glucose medium is fulfilled prior to the nuclear division by the combined action of oxidative and photosynthetic phosphorylation, mostly by the oxidative phosphorylation.

  • PDF

Phosphorylation-Dependent Mobility Shift of Proteins on SDS-PAGE is Due to Decreased Binding of SDS

  • Lee, Chang-Ro;Park, Young-Ha;Kim, Yeon-Ran;Peterkofsky, Alan;Seok, Yeong-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2063-2066
    • /
    • 2013
  • While many eukaryotic and some prokaryotic proteins show a phosphorylation-dependent mobility shift (PDMS) on SDS-PAGE, the molecular mechanism for this phenomenon had not been elucidated. We have recently shown that the distribution of negatively charged amino acids around the phosphorylation site is important for the PDMS of some proteins. Here, we show that replacement of the phosphorylation site with a negatively charged amino acid results in a similar degree of the mobility shift of a protein as phosphorylation, indicating that the PDMS is due to the introduction of a negative charge by phosphorylation. Compared with a protein showing no shift, one showing a retarded mobility on SDS-PAGE had a decreased capacity for SDS binding. The elucidation of the consensus sequence (${\Theta}X_{1-3}{\Theta}X_{1-3}{\Theta}$, where ${\Theta}$ corresponds to an acidic function) for a PDMS suggests a general strategy for mutagenizing a phosphorylatable protein resulting in a PDMS.

Stimulation of eNOS-Ser617 Phosphorylation by Fluid Shear Stress in Endothelial Cells

  • Boo, Yong-Chool
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.178-182
    • /
    • 2005
  • Nitric oxide (NO) produced from endothelial cells plays a critical role in vascular physiology. The regulation of endothelial NO synthase (eNOS) involves various mechanisms including multiple Ser/Thr phosphorylations. Recently, eNOS-Ser617 was newly recognized to be phosphorylated in response to humoral factors including vascular endothelial growth factor. However, it remains unknown whether and how eNOS-Ser617 phosphorylation is stimulated by shear stress, the primary stimulus of endothelial NO production. This issue was explored in the present study using cultured bovine aortic endothelial cells (BAECs). Over-expression of a constitutively active protein kinase B(Akt) mutant in BAECs increased Ser617 phosphorylation while constitutively active protein kinase A mutant had no effect. When BAECs were subjected to an arterial level of laminar shear stress, eNOS-Ser617 phosphorylation was clearly increased in a time-dependent manner. Shear stress also stimulated Akt phosphorylation at Thr308, one of the key regulatory sites. The time courses of eNOS-Ser617 and Akt-Thr308 phosphorylations appeared to be very similar. These results suggested that eNOS-Ser617 phosphorylation, mediated by Akt, is a physiological response to the mechanical shear stress, involved in the regulation of NO production in endothelial cells.

Reduction of Ambiguity in Phosphorylation-site Localization in Large-scale Phosphopeptide Profiling by Data Filter using Unique Mass Class Information

  • Madar, Inamul Hasan;Back, Seunghoon;Mun, Dong-Gi;Kim, Hokeun;Jung, Jae Hun;Kim, Kwang Pyo;Lee, Sang-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.845-850
    • /
    • 2014
  • The rapid development of shotgun proteomics is paving the way for extensive proteome profiling, while providing extensive information on various post translational modifications (PTMs) that occur to a proteome of interest. For example, the current phosphoproteomic methods can yield more than 10,000 phosphopeptides identified from a proteome sample. Despite these developments, it remains a challenging issue to pinpoint the true phosphorylation sites, especially when multiple sites are possible for phosphorylation in the peptides. We developed the Phospho-UMC filter, which is a simple method of localizing the site of phosphorylation using unique mass classes (UMCs) information to differentiate phosphopeptides with different phosphorylation sites and increase the confidence in phosphorylation site localization. The method was applied to large scale phosphopeptide profiling data and was demonstrated to be effective in the reducing ambiguity associated with the tandem mass spectrometric data analysis of phosphopeptides.

Stage-Specific Changes and Regulation of Endogenous Protein Phosphorylation in Allomyces macrogynus

  • Park, Young-Shik;Oh, Keun-Hee;Lee, Soo-Woong;Seong, Chang-Soo;Park, I-Ha;Yim, Jeong-Bin
    • Journal of Microbiology
    • /
    • v.34 no.4
    • /
    • pp.374-378
    • /
    • 1996
  • In the aquatic fungus Allomyces macrogynus the effects of $Ca^{2+}$ and cAMP on the intracellular signal transduction of zoospore germination were studied using in vitro protein phosphorylation assay system. An endogenously phosphorylated protein (p50) having molecular weight of 50 kDa on SDS-PAGE was found in soluble fractions of both zoospore and mycelium. In zoospore extract, the endogenous phosphorylation of p50 was weak without any effectors, but was enhanced by $Ca^{2+}$ and even more by cAMP. Phosphorylation of the same protein in mycelial extract was high only in the absence of cAMP. Irrespective of the presence of $Ca^{2+}$ and cAMP, its phosphorylation was antagonistically suppressed in assay of combined zoospore and mycelial extracts. These results suggest that p50 is interconvertible in phosphorylation/dephosphorylation as a novel protein involved in germination of A. macrogynus. The antagonistic effect of cAMP to the phosphorylation of p50s from different developmental stages may be important in the regulation of cellular differentiation.

  • PDF

Direct tyrosine phosphorylation of Akt/PKB by epidermal growth factor receptor (EGF 수용체에 의한 Akt/PKB의 tyrosine 인산화에 대한 연구)

  • Bae, Sun-Sik;Choi, Jang-Hyun;Yun, Sung-Ji;Kim, Eun-Kyung;Oh, Yong-Suk;Kim, Chi-Dae;Suh, Pann-Ghill
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.185-191
    • /
    • 2007
  • Akt/PKB plays pivotal roles in many physiological responses such as proliferation, differentiation, apoptosis, and angiogenesis. Here we show that tyrosine phosphorylation of Akt/PKB is essential for the subsequent phosphorylation at $Thr^{\308}$. Tyrosine phosphorylation of Akt/PKB was induced by stimulation of COS-7 cells with epidermal growth factor receptor (EGF) and its phosphorylation was significantly enhanced by constitutive targeting of Akt/PKB to the plasma membrane by myristoylation. Interestingly, incubation of affinity purified Myc-tagged Akt/PKB with purified EGF receptor resulted in tyrosine phosphorylation as well as $Ser^{\473}$ phosphorylation of Akt/PKB. In addition, tyrosine-phosphorylated Akt/PKB could directly associate with activated EGF receptor in vitro. Finally, alanine mutation at putative tyrosine phosphorylation site $(Tyr^{\326})$ abolished EGF induced $Thr^{\308}$ phosphorylation of wild type as well as constitutively active form of Akt/PKB. Given these results we suggest here that direct tyrosine phosphorylation of Akt/PKB by EGF receptor could be another mechanism of EGF-induced control of many physiological responses.

FSCB phosphorylation in mouse spermatozoa capacitation

  • Liu, Shun-Li;Ni, Bing;Wang, Xiang-Wei;Huo, Wen-Qian;Zhang, Jun;Tian, Zhi-Qiang;Huang, Ze-Min;Tian, Yi;Tang, Jun;Zheng, Yan-Hua;Jin, Feng-Shuo;Li, Yan-Feng
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.541-546
    • /
    • 2011
  • It is generally accepted that spermatozoa capacitation is associated with protein kinase A-mediated tyrosine phosphorylation. In our previous study, we identified the fibrous sheath CABYR binding protein (FSCB), which was phosphorylated by PKA. However, the phosphorylation status of FSCB protein during spermatozoa capacitation should be further investigated. To this aim, in this study, we found that phosphorylation of this 270-kDa protein occurred as early as 1 min after mouse spermatozoa capacitation, which increased over time and remained stable after 60 min. Immunoprecipitation assays demonstrated that the tyrosine and Ser/Thr phosphorylation of FSCB occurred during spermatozoa capacitation. The extent of phosphorylation and was closely associated with the PKA activity and spermatozoa motility characteristics. FSCB phosphorylation could be induced by PKA agonist DB-cAMP, but was blocked by PKA antagonist H-89.Therefore, FSCB contributes to spermatozoa capacitation in a tyrosine-phosphorylated format, which may help in further elucidating the molecular mechanism of spermatozoa capacitation.

Carbachol-induced Phosphorylation of Phospholipase D1 through Protein Kinase C is required for the Activation in COS-7 cells

  • Lee, Byoung-Dae;Kim, Yong;Han, Jung-Min;Suh, Pann-Ghill;Ryu, Sung-Ho
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.182-187
    • /
    • 2001
  • Phospholiapse D (PLD), and phosphatidic acid generated by it, have been implicated in receptor-mediated intracellular signaling. Carbachol (CCh) is known to activate PLD1, and protein kinase C (PKC) is known to mediate in this signaling pathway In recent reports (Kim et al., 1999b; Kim et al., 2000), we published our observations of the direct phosphorylation of PLD1 by PKC and we described the phosphorylation-dependent regulation of PLD1 activity. In this study, we investigated the phasphorylation and compartmentalization of PLD1 in terms of CCh signaling in M3 muscarinic receptor (M3R)-expressing COS-7 cells. CCh treatment of COS-7 cells transiently coexpressing PLD1 and M3R stimulated PLD1 activity and induced direct phosphorylation of PLD1 by PKC. The CCh-induced activation and phosphorylation of PLD1 was completely blocked upon pretreatment of the cells with PKC-specific inhibitors. We looked at the localization of the PLD1 phosphorylation by PKC and found that PLD1 was mainly located in the caveolin-enriched membrane (CEM) fraction. Based on these results, we conclude that CCh induces the activation and phosphorylation of PLD1 via PKC and that the phosphorylation of PLD1 occurs in caveolae.

  • PDF