References
- Balendran, A., Biondi, R.M., Cheung, P.C., Casamayor, A., Deak, M., and Alessi, D.R. (2000). A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase Czeta (PKCzeta ) and PKC-related kinase 2 by PDK1. J. Biol. Chem. 275, 20806-20813. https://doi.org/10.1074/jbc.M000421200
- Bhatt, D., and Ghosh, S. (2014). Regulation of the NF-kappaB-mediated transcription of inflammatory genes. Front. Immunol. 5, 71.
- Casamayor, A., Morrice, N.A., and Alessi, D.R. (1999). Phosphorylation of Ser-241 is essential for the activity of 3-phosphoinositide-dependent protein kinase-1: identification of five sites of phosphorylation in vivo. Biochem. J. 342 (Pt 2), 287-292. https://doi.org/10.1042/bj3420287
- Cho, J.E., Kim, Y.S., Park, S., Cho, S.N., and Lee, H. (2010). Mycobacterium tuberculosis-induced expression of Leukotactin-1 is mediated by the PI3-K/PDK1/Akt signaling pathway. Mol. Cells 29, 35-39. https://doi.org/10.1007/s10059-010-0003-5
- Eckerdt, F., Yuan, J., Saxena, K., Martin, B., Kappel, S., Lindenau, C., Kramer, A., Naumann, S., Daum, S., Fischer, G., et al. (2005). Polo-like kinase 1-mediated phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells. J. Biol. Chem. 280, 36575-36583. https://doi.org/10.1074/jbc.M504548200
- Kang, J.A., Jeong, S.P., Park, D., Hayden, M.S., Ghosh, S., and Park, S.G. (2013). Transition from heterotypic to homotypic PDK1 homodimerization is essential for TCR-mediated NF-kappaB activation. J. Immunol. 190, 4508-4515. https://doi.org/10.4049/jimmunol.1202923
- Kenchappa, P., Yadav, A., Singh, G., Nandana, S., and Banerjee, K. (2004). Rescue of TNFalpha-inhibited neuronal cells by IGF-1 involves Akt and c-Jun N-terminal kinases. J. Neurosci. Res. 76, 466-474. https://doi.org/10.1002/jnr.20081
- Lee, K.Y., D'Acquisto, F., Hayden, M.S., Shim, J.H., and Ghosh, S. (2005). PDK1 nucleates T cell receptor-induced signaling complex for NF-kappaB activation. Science 308, 114-118. https://doi.org/10.1126/science.1107107
- Mestas, J., and Hughes, C.C. (2004). Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731-2738. https://doi.org/10.4049/jimmunol.172.5.2731
- Mora, A., Komander, D., van Aalten, D.M., and Alessi, D.R. (2004). PDK1, the master regulator of AGC kinase signal transduction. Semin. Cell Dev. Biol. 15, 161-170. https://doi.org/10.1016/j.semcdb.2003.12.022
- Park, S.G., Schulze-Luehrman, J., Hayden, M.S., Hashimoto, N., Ogawa, W., Kasuga, M., and Ghosh, S. (2009). The kinase PDK1 integrates T cell antigen receptor and CD28 coreceptor signaling to induce NF-kappaB and activate T cells. Nat. Immunol. 10, 158-166. https://doi.org/10.1038/ni.1687
- Park, S.G., Long, M., Kang, J.A., Kim, W.S., Lee, C.R., Im, S.H., Strickland, I., Schulze-Luehrmann, J., Hayden, M.S., and Ghosh, S. (2013). The kinase PDK1 is essential for B-cell receptor mediated survival signaling. PloS One 8, e55378. https://doi.org/10.1371/journal.pone.0055378
- Riojas, R.A., Kikani, C.K., Wang, C., Mao, X., Zhou, L., Langlais, P.R., Hu, D., Roberts, J.L., Dong, L.Q., and Liu, F. (2006). Fine tuning PDK1 activity by phosphorylation at Ser163. J. Biol. Chem. 281, 21588-21593. https://doi.org/10.1074/jbc.M600393200
- Scheid, M.P., Parsons, M., and Woodgett, J.R. (2005). Phosphoinositide-dependent phosphorylation of PDK1 regulates nuclear translocation. Mol. Cell. Biol. 25, 2347-2363. https://doi.org/10.1128/MCB.25.6.2347-2363.2005
- Seong, H.A., Jung, H., Ichijo, H., and Ha, H. (2010). Reciprocal negative regulation of PDK1 and ASK1 signaling by direct interaction and phosphorylation. J. Biol. Chem. 285, 2397-2414. https://doi.org/10.1074/jbc.M109.064295
- Villalba, M., Coudronniere, N., Deckert, M., Teixeiro, E., Mas, P., and Altman, A. (2000). A novel functional interaction between Vav and PKCtheta is required for TCR-induced T cell activation. Immunity 12, 151-160. https://doi.org/10.1016/S1074-7613(00)80168-5
- Villalba, M., Bi, K., Hu, J., Altman, Y., Bushway, P., Reits, E., Neefjes, J., Baier, G., Abraham, R.T., and Altman, A. (2002). Translocation of PKC[theta] in T cells is mediated by a nonconventional, PI3-K- and Vav-dependent pathway, but does not absolutely require phospholipase C. J. Cell. Biol. 157, 253-263. https://doi.org/10.1083/jcb.200201097
- Wang, C., Liu, M., Riojas, R.A., Xin, X., Gao, Z., Zeng, R., Wu, J., Dong, L.Q., and Liu, F. (2009). Protein kinase C theta (PKCtheta)-dependent phosphorylation of PDK1 at Ser504 and Ser532 contributes to palmitate-induced insulin resistance. J. Biol. Chem. 284, 2038-2044. https://doi.org/10.1074/jbc.M806336200
- Wang, X., Chuang, H.C., Li, J.P., and Tan, T.H. (2012). Regulation of PKC-theta function by phosphorylation in T cell receptor signaling. Front. Immunol. 3, 197.
Cited by
- microRNA-145-3p inhibits non-small cell lung cancer cell migration and invasion by targeting PDK1 via the mTOR signaling pathway vol.119, pp.1, 2018, https://doi.org/10.1002/jcb.26252
- Myeloid deletion of phosphoinositide-dependent kinase-1 enhances NK cell-mediated antitumor immunity by mediating macrophage polarization vol.9, pp.1, 2020, https://doi.org/10.1080/2162402x.2020.1774281
- FasL-PDPK1 Pathway Promotes the Cytotoxicity of CD8+ T Cells During Ischemic Stroke vol.11, pp.4, 2020, https://doi.org/10.1007/s12975-019-00749-0