• Title/Summary/Keyword: Phosphorylated protein

Search Result 375, Processing Time 0.024 seconds

Antagonists of Phosphatidylinositol 3-Kinase Block Phosphorylation-Dependent Activation of the Leukocyte NADPH Oxidase in a Cell-Free System

  • Park, Jeen-Woo
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.182-187
    • /
    • 1997
  • The NADPH oxidase of phagocytes catalyzes the reduction of oxygen to $O_2^-$ at the expense of NADPH. The enzyme is dormant in resting neutrophils and becomes activated on stimulation. During activation, $p47^{phox}\;(\underline{ph}agocyte\;\underline{ox}idase\;factor)$, a cytosolic oxidase subunit, becomes extensively phosphorylated at a number of serines located between S303-S379. Oxidase activation can also be achieved by the addition of phosphorylated recombinant $p47^{phox}$ by protein kinase C in the cell-free system in the presence of $GTP{\gamma}S$. The cell-free activation is inhibited by wortmannin and LY294002. specific inhibitors of phosphatidylinositol 3kinase (PI 3-kinasel) These results indicate that PI 3-kinase may playa pivotal role in the activation of NADPH oxidase.

  • PDF

Effects of Curcumin on Apoptosis in SW480 Human Colon Cancer Cell Line (Curcumin이 인체대장암세포주인 SW480 cell에서 세포사멸에 미치는 영향)

  • 최옥숙;김우경
    • Journal of Nutrition and Health
    • /
    • v.37 no.1
    • /
    • pp.31-37
    • /
    • 2004
  • Curcumin, a natural compound extracted from rhizomes of Curcuma longa, has been shown to possess potent anti-inflammatory and anti-tumor activity. The mechanism by which curcumin initiates apoptosis remains poorly understood. In this study, we investigated the effects of curcumin on caspase-3 activity and protein expression of procaspase-3, Bcl-2, Bax, total Akt and phosphorylated Akt in SW480 human colon cancer cell. We cultured SW480 cells in the presence of various concentrations (0, 10, 20 or 30 uM) of curcumin. Curcumin inhibited colon cancer cell growth in a dose-dependent manner (p < 0.05). Caspase-3 activity was significantly increased dose-dependently in cells treated with curcumin (p < 0.05), concisely procaspase-3 expression was significantly decreased. Bcl-2 levels were decreased dose-dependently in cells treated with curcumin (p < 0.05), but Ben remained unchanged. In addition, phosphorylated Akt levels and total Akt levels were markedly lower in cells treated with 20 uM of curcumin treatment (p < 0.05), In conclusion, we have shown that curcumin inhibits cell growth and induces apoptosis in SW480 human colon cancer cell lines via Akt signal pathway.

Nitrated Proteome in Human Embryonic Stem Cells

  • Kang, Jeong Won;Hwang, Daehee;Kim, Kwang Pyo
    • Mass Spectrometry Letters
    • /
    • v.7 no.4
    • /
    • pp.85-90
    • /
    • 2016
  • Post-translational modifications (PTMs) of proteins regulate self-renewal and differentiation in embryonic stem cells (ESCs). Nitration of tyrosine residues of proteins in ESCs modulates their downstream pathways, which can affect self-renewal and differentiation. However, protein tyrosine nitration (PTN) in ESCs has been rarely studied. We reviewed 23 nitrated sites in stem cell proteins. Functional enrichment analysis showed that these nitrated proteins are involved in signal transduction, cell adhesion and migration, and cell proliferation in ESCs. Comparison between the nitrated and known phosphorylated sites revealed that 7 nitrated sites had overlapping phosphorylated sites, indicating functional links of PTNs to their associated signaling pathways in ESCs. Therefore, nitrated proteome provides a basis for understanding potential roles of PTN in self-renewal and differentiation of ESCs.

The potential impact of low dose ionizing ${\gamma}$-radiation on immune response activity up-regulated by Ikaros in IM-9 B lymphocytes

  • Kim, Sung-Jin;Jang, Seon-A;Yang, Kwang-Hee;Kim, Ji-Young;Kim, Cha-Soon;Nam, Seon-Young;Jeong, Mee-Seon;Jin, Young-Woo
    • 대한방사선방어학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.212-213
    • /
    • 2011
  • The biological effects of low dose ionizing radiation (LDIR) remain insufficiently understood. We examined for the scientific evidence to show the biological effects of LDIR using radiation-sensitive immune cells. We found that Ikaros protein was responsed to low dose-dependent effects of gamma radiation in IM-9 B lymphocytes. Ikaros encodes zinc finger transcription factors that is important regulators of a hematopoietic stem cells (HSCs) progression to the B lymphoid lineage development, differentiation and proliferation. In this study, we observed that cell proliferation was enhanced from 10% to 20% by LDIR (0.05 Gy) in IM-9 B lymphocytes. The Ikaros protein was phosphorylated in its serine/threonine (S/T) region and decreased its DNA binding activity in the cells exposed to LDIR. We found that Ikaros phosphorylation was up-regulated by CK2/AKT pathway and the residues of ser-304 and ser-306 in Ikaros was phosphorylated by LDIR. We also observed that Ikaros protein was localized from the nucleus to the cytoplasm after LDIR and bound with Autotaxin (ENPP2, ATX) protein, stimulating proliferation, migration and survival of immune cells. In addition, we found that the lysoPLD activity of ATX was dependent on Ikaros-ATX binding activity. These results indicate that the Ikaros is an important regulator of immune activation. Therefore, we suggest that low dose ionizing radiation can be considered as a beneficial effects, stimulating the activation of immune cells.

  • PDF

Artemisia capillaris Thunb. inhibits melanin synthesis activity via ERK-dependent MITF pathway in B16/F10 melanoma cells

  • Saba, Evelyn;Oh, Mi Ju;Lee, Yuan Yee;Kwak, Dongmi;Kim, Suk;Rhee, Man Hee
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • Genus Artemisia occurs as a hardy plant and has a wide range of culinary and medicinal features. In this study, we aimed to describe the melanin inhibitory activity of one Artemisia species, i.e., Artemisia capillaris Thunb. Ethanol extracts of fermented Artemisia capillaris (Art.EtOH.FT) and non-fermented Artemisia capillaris (Art.EtOH.CT) were tested for their ability to inhibit tyrosinase activity and melanin pigmentation. Both extracts showed dose-dependent inhibition against ${\alpha}$-melanocyte stimulating hormone-stimulated melanin formation and tyrosinase activity, without cytotoxicity. At $100{\mu}g/mL$, both extracts showed greater inhibition than kojic acid, the positive control. Protein expressions of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2) at the transcriptional level were determined by using real-time and semi-quantitative polymerase chain reaction. To complete the mechanistic study, presences of upstream elements of MITF, the phosphorylated-extracellular signal-regulated kinase (p-ERK), and phosphorylated-mitogen-activated protein kinase kinase (p-MEK) were confirmed by using western blot analysis. Expressions of p-TYR, p-TRP-1 and p-TRP-2, downstream factors for p-ERK and p-MITF, were translationally inhibited by both extracts. Art.EtOH.FT induced more potent effects than Art.EtOH.CT, especially signal transduction effects. In summary, Artemisia capillaris extracts appear to act as potent hypopigmentation agents.

The Inhibitory Effects of Nelumbo nucifera Gaertner Extract on Melanogenesis (연자육 추출물의 멜라닌 합성 저해효과)

  • Lee, Jun Young;Im, Kyung Ran;Jung, Taek Kyu;Yoon, Kyung-Sup
    • KSBB Journal
    • /
    • v.28 no.2
    • /
    • pp.137-145
    • /
    • 2013
  • In order to develop new skin whitening agents, we prepared the $CH_2Cl_2$ layer (NGC) and BuOH layer (NGB) of 75% EtOH extract of the Nelumbinis nucifera Gaertner. We measured their tyrosinase inhibitory activity in vitro and melanin synthesis inhibitory activity in B16-F1 melanoma cells. They did not show inhibitory activity against mushroom tyrosinase but showed melanin synthesis inhibitory activity in a dose-dependent manner. In a melanin synthesis inhibition assay, NGC and NGB suppressed melanin production up to 52% and 46% at a concentration of $100{\mu}g/mL$, respectively. To elucidate the mechanism of the inhibitory effects of NGC and NGB on melanogenesis, we measured the expression of melanogenesis-related proteins by western blot assay. As a result, NGC suppressed the expression of tyrosinase, tyrosinase related protein 1 (TRP-1), tyrosinase related protein 2 (TRP-2), phosphorylated cAMP responsive element binding (p-CREB) protein, and microphthalmia associated transcription factor (MITF). And NGB inhibited the protein expression of tyrosinase and MITF, but had no significant effect on TRP-1, TRP-2, and p-CREB expression. Moreover, NGB increased the expression of phosphorylated extracellular signal-regulated kinase (p-ERK). In addition, we examined the inhibitory effect on the glycosylation of tyrosinase. As a result, NGC and NGB inhibited the activity of ${\alpha}$-glucosidase in vitro and the glycosylation of tyrosinase in B16-F1 melanoma cells. From these results, we concluded that NGC and NGB could be used as active ingredients for skin whitening.

Anti-inflammatory Effects of Kiyomi (Citrus unshiu × C. sinensis) Leaf Ethanol Extract Via the Regulation of NF-𝜅B and MAPKs in LPS Induced RAW 264.7 Cells (청견 잎 에탄올 추출물의 NF-𝜅B와 MAPK 조절을 통한 항염증 효과)

  • Chung-Mu Park;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.3
    • /
    • pp.159-169
    • /
    • 2023
  • Purpose : Though other Citrus spp. have reported their anti-inflammatory and antioxidative activities in previous studies, the biological activity of Kiyomi (Citrus unshiu × C. sinensis) has not been reported yet. Therefore, this study attempted to analyze the anti-inflammatory mechanisms of Kiyomi leaf ethanol extract (KLEE) in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Methods : The cytotoxic effect of KLEE in RAW 264.7 cells was determined by WST-1 assay. Bacterial endotoxin, the concentration of nitric oxide (NO) was analyzed by the Griess reaction. In addition, Western blot analysis was applied to measure the protein expression level of inducible NO synthase (iNOS). The phosphorylated status of the critical inflammatory transcription factor, nuclear factor (NF)-𝜅B, and its upstream signaling molecules, phosphoinositide 3-kinase (PI3K)/Akt as well as mitogen-activated protein kinases (MAPKs), were also measured by Western blot analysis. Results : KLEE was not cytotoxic up to a concentration of 200 ㎍/㎖, and protein expression levels of iNOS and cyclooxygenase (COX)-2, enzymes that counteract NO and prostaglandin (PG) E2 production, were inhibited by KLEE treatment. The phosphorylated status of PI3K/Akt as well as MAPKs including extracellular regulated kinase (ERK), c-jun NH2kinase (JNK), and p38, were significantly attenuated by KLEE treatment in LPS stimulated RAW 264.7 cells. Moreover, one of phase II enzymes, heme oxygenase (HO)-1 which has known for its anti-inflammatory capacity, was strongly induced by KLEE treatment. Conclusion : Consequently, KLEE treatment significantly attenuated the production of NO as well as the expression levels of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells. The inflammatory transcription factor, NF-𝜅B, as well as its upstream signaling molecules, PI3K/Akt and MAPKs, were also diminished by KLEE treatment with statistical significance in LPS-stimulated RAW 264.7 cells. These results suggest that KLEE might be a promising candidate for the attenuation of inflammatory disorders.

Biomedical Application of Phosphoproteomics in Neurodegenerative Diseases

  • Bahk, Young Yil;Mohamed, Bari;Kim, Young Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.3
    • /
    • pp.279-288
    • /
    • 2013
  • Phosphorylation and dephosphorylation of proteins trigger many critical events involved in cellular response, such as regulation of enzymatic activity, protein conformational change, protein-protein interaction, and cellular localization. Any malfunction of protein phosphorylation leads to a diseased state such as diabetes, cancer, and even neurodegenerative diseases. In order to comprehend the molecular view of the complex biological processes of these diseases in depth, very sensitive and detailed analytical methods are necessary for identification of the phosphorylated residues in a protein. As part of these efforts, phosphoproteomics has been developed and applied for the elucidation of neurodegenerative diseases. In this review, we present a brief summary of phosphoproteomics approaches that are now routinely used in biomedical research, and describe the biomedical application of phosphoproteomics especially in Alzheimer's and other neurodegenerative diseases.

Protective effects of Cirsium setidens ethanolic extracts against alcoholic fatty liver injury in rats (곤드레 (Cirsium setidens) 에탄올 추출물의 알코올성 지방간 손상 억제 효과)

  • Kim, Eun-Hye;Chung, Jayong
    • Journal of Nutrition and Health
    • /
    • v.49 no.6
    • /
    • pp.420-428
    • /
    • 2016
  • Purpose: In this study, we investigated the effects of Cirsium setidens ethanolic extract (CS) on the development of alcoholic fatty liver and associated injury. Methods: Sprague-Dawley male rats were fed either Lieber-DeCarli control (C) or ethanol (35.5% of total calories) liquid diet with 0 (E), 100 mg/kgBW CS (E+LCS), or 500 mg/kgBW CS (E+HCS) for 8 weeks. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities as well as TG and cholesterol concentrations in the serum and liver tissues were measured by colorimetric assays. Liver histopathology was examined by Hematoxylin-eosin staining of the fixed liver tissues. Protein levels of phosphorylated-AMP activated protein kinase (p-AMPK), phosphorylated-acetyl CoA carboxylase (p-ACC), phosphorylated-nuclear factor kappa B (p-$NF{\kappa}B$), and $TNF{\alpha}$ were measured by Western blot analyses. Results: Both doses of CS markedly suppressed alcohol-induced lipid droplets accumulation in the liver tissues and significantly inhibited alcohol-induced increases in activities of serum ALT and serum AST. Similarly, CS significantly reduced hepatic and serum TG concentrations. Compared to groups fed alcohol only, CS supplementation strongly increased hepatic levels of p-AMPK and p-ACC. Further, CS significantly inhibited alcohol-induced phosphorylation of $NF{\kappa}B$, which was associated with reduced hepatic protein levels of $TNF{\alpha}$. Conclusion: Our data demonstrated that CS has a protective effect against alcoholic liver injury, which was associated with activation of AMPK and inhibition of $NF{\kappa}B$.

Functional Characterization of Phosphorylation of the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Nucleocapsid Protein (PRRS 바이러스 Nucleocapsid 단백질 인산화의 기능학적 연구)

  • Lee, Chang-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.287-292
    • /
    • 2009
  • The nucleocapsid (N) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is a basic multifunctional protein which has been reported to be a serine phosphoprotein with yet-identified functions. As a first step towards understanding the general role of N protein phosphorylation during virus replication, the non-phosphorylated mutant N gene was constructed by mutating all serine residues to alanine. This recombinant N protein was identified to be unphosphorylated, confirming that serine residues truly function as core amino acids responsible for N protein phosphorylation. The PRRSV N protein has been shown to possess the biological features of nuclear localization and N-N homodimerization which individually play critical roles in virus infection. In the present study, therefore, it was attempted to investigate whether these two properties of the N protein are modulated by its phosphorylation status. However, experimental results showed that the non-phosphorylated N protein was still present in the nucleus and nucleolus, and was able to associate with itself by non-covalent interactions. Taken together, the data suggest phosphorylation-independent regulation of N protein nuclear transport or oligomerization, thereby implying the potential involvement of phosphorylation in regulating the activities of the N protein at other levels including RNA-binding capacity.