• Title/Summary/Keyword: Phosphorescent materials

Search Result 150, Processing Time 0.032 seconds

Emission Characteristics of White Tandem Organic Light Emitting Diodes Using Blue and Red Phosphorescent Materials (청색과 적색 인광 물질을 사용한 백색 적층 OLED의 발광 특성)

  • Park, Chan-Suk;Ju, Sung-Hoo
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.2
    • /
    • pp.196-201
    • /
    • 2016
  • We studied white tandem organic light-emitting diodes using blue and red phosphorescent materials. Optimized white single phosphorescent OLED was fabricated using CBP : FIrpic (12 vol.%, 9 nm) / CBP : $Ir(mphmq)_2acac$ : $Ir(ppy)_3$ (1 vol.%, 1 vol.%, 1 nm) as emitting layer (EML). The single phosphorescent OLED showed maximum current efficiency of 22.5 cd/A, white emission with a Commission Internationale de l'Eclairage (CIE) coordinates of (0.342, 0.37) at $1,000cd/m^2$, and variation of CIE coordinates with ($0.339{\pm}0.008$, $0.371{\pm}0.001$) from 500 to $3,000cd/m^2$. Optimized white tandem phosphorescent OLED was fabricated using CBP : FIrpic (12 vol.%, 7 nm) / CBP : $Ir(mphmq)_2acac$ : $Ir(ppy)_3$ (1 vol.%, 1 vol.%, 3 nm) as EML. The tandem phosphorescent OLED showed maximum current efficiency of 49.2 cd/A, white emission with a CIE coordinates of (0.376, 0.366) at $1,000cd/m^2$, variation of CIE coordinates with ($0.375{\pm}0.004$, $0.367{\pm}0.002$) from 500 to $3,000cd/m^2$. Maximum current efficiency of tandem phosphorescent OLED was more twice as high as single phosphorescent OLED. Our results suggest that tandem phosphorescent OLED was possible to control CIE coordinates and produce excellent color stability.

Highly efficient blue phosphorescent organic light-emitting device using new host materials

  • Seo, Yu-Seok;Kim, Tae-Yong;Moon, Dae-Gyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.817-819
    • /
    • 2009
  • We have developed highly efficient blue phosphorescent organic light-emitting devices (PHOLEDs) with simplified architectures using new host materials. The Blue PHOLED with new host:FIrpic emitting layer exhibits a maximum luminance efficiency of 34 cd/A and a low operating voltage 5 V at a high luminance of 1212 cd/$m^2$.

  • PDF

White Organic Light-emitting Diodes using red and blue phosphorescent materials (적색과 청색 인광 소재를 이용한 백색 유기 발광 소자에 관한 연구)

  • Park, Jung-Hyun;Choi, Hak-Bum;Kim, Gu-Young;Lee, Seok-Jae;Seo, Ji-Hyun;Seo, Ji-Hoon;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.64-65
    • /
    • 2007
  • High-efficiency white organic light-emitting diodes (WOLEDs) were fabricated with two emissive layers and exciton blocking layer was sandwiched between two phosphorescent dyes which were, bis(3,5-Difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III (Flrpic) as blue emission and a newly synthesized red phosphorescent material guest, Bis(5-benzoyl-2-phenylpyridinato-C,N)iridium(III) (acetylacetonate) ((Bzppy)2Ir(III)acac). This exciton blocking layer prevents a triple-triple energy transfer between the two phosphorescent emissive layers with balanced emission of blue and red. The white device showed the Commission Internationale d'Eclairage (CIEx,y) coordinates of (0.34, 0.40) at the maximum luminance of $24100\;cd/m^2$ and maximum luminous efficiency of 22.4 cd/A, respectively.

  • PDF

The visibility of emergency exit signs using phosphorescent materials (축광재료를 이용한 피난유도표지의 시인성에 관한 연구)

  • Hur, Man-Sung;Fujita, Akihiro
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.157-164
    • /
    • 2008
  • The optical characteristcs and visibility of emergence esit signs made with phosphorescent materials have been studied and compared with conventional signs. The phosphorescence of the materials meets standards as defineds by JIS, and achieved a level of brightness recognizable by the human eye. The visibility in the dard of the signs using the phosphorescent materials was shown to be higher than that of currently employed materials. It was confirmed that phosphorescent materials show excellent promise to improve the visibility of emergency exit signs.

  • PDF

Device Characteristics of white OLED using the fluorescent and phosphorescent materials coupled with interlayer

  • Lee, Young-Hoon;Kim, Jai-Kyeong;Yoo, Jai-Woong;Ju, Byeong-Kwon;Kwon, Jang-Hyuk;Jeon, Woo-Sik;Chin, Byung-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1437-1439
    • /
    • 2007
  • We fabricated white organic light emitting device (WOLED) with the layered fluorescent blue material and phosphorescent green/red dye-doped materials. Addition of the non-doped phosphorescent host material between the fluorescent and phosphorescent light emitting layers provided the result of broadband white spectrum, with improved balance, higher efficiency, and lower power consumption. In our devices, there was no need of exciton-blocking layer between the each emission layer for the further confinement of the diffusion of excitons.

  • PDF

Optical Characteristics of Phosphorescent Materials with Water-based Ceramics (축광세라믹스의 광학적 특성에 관한 연구)

  • Fujita Akihiro;Kagami Shinya;Hur Man-Sung;Jones Mark I
    • Fire Science and Engineering
    • /
    • v.19 no.4 s.60
    • /
    • pp.42-46
    • /
    • 2005
  • This study is intended to examine the degree of phosphorescent luminance in proportion to the amount of phosphorescent pigments in the ceramic based coating. The results of this study were that the degree of phosphorescent luminance was Increased in proportion to the amount of phosphorescent pigments in the ceramic based coatings. Samples with more than $20\%$ of phosphorescent pigments exceeded the Japanese Industrial Standard for security signs. Luminance levels 10 times greater than the KS and JIS standard were obtained with a concentration of $50\%$. The luminance increased initially with the number of applications of the ceramic based coating but there was no further increase for more than 4 applications. The water-based phosphorescent ceramics developed here are made entirely of inorganic materials and do not generate toxic gases. The optical characteristics of these materials makes them suitable for use in phosphorescent emergency exit signs in place of the traditionally used vinyl chloride materials.

Low voltage driving red phosphorescent organic light-emitting devices

  • Kim, Tae-Yong;Suh, Won-Gyu;Moon, Dae-Gyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.461-464
    • /
    • 2008
  • We have developed low voltage driving red phosphorescent organic light-emitting devices using a new electron transport layer. $Ir(piq)_3$ and CBP were used as a phosphorescent dopant and an emission host, respectively. The device exhibits a luminance of $1000\;cd/m^2$ at a voltage of 2.8 V. This high luminance at low voltage results from a high electron conduction behavior of the new electron transport layer.

  • PDF

Novel transport materials for high-performance fluorescent and phosphorescent OLEDs

  • Bohm, E.;Anemian, R.;Busing, A.;Fortte, R.;Heil, H.;Kaiser, J.;Krober, J.;Leu, S.;Mujica-Fernaud, T.;Parham, A.;Pflumm, C.;Voges, F.
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.141-144
    • /
    • 2011
  • To improve the performance of blue fluorescent and green phosphorescent organic light-emitting diode devices, Merck developed novel green phosphorescent host and electron-transporting materials. The newly developed electron-transporting material improves the external quantum efficiency of blue fluorescent devices up to 8.7%, with an excellent lifetime. In combination with the newly developed host materials, the efficiency of green phosphorescent devices can be improved by a factor of 1.7, and the lifetime by a factor of 7.

Charge Balance in High Efficiency Blue Phosphorescent Organic Light Emitting Diodes

  • Chopra, Neetu;Lee, Jae-Won;So, Franky
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.184-187
    • /
    • 2009
  • In this paper, we study effect of charge balance on performance of blue phosphorescent organic light emitting diodes (OLEDs). Charge balance determines the location of recombination zone in the OLEDs. By tuning the charge balance in iridium (III) bis[(4,6-difluorophenyl)-pyridinate-N,C2']picolinate (FIrpic) based blue phosphorescent organic light-emitting devices (PHOLEDs) with a high mobility and high triplet energy electron transporting material, we were able to achieve a high current efficiency of 60 cd/A which is a 3X improvement over previous devices with 3,5'-N,N'-dicarbazole-benzene (mCP) host.

  • PDF

Phosphorescent Azacrown Ether-appended Iridium (III) Complex for the Selective Detection of Hg2+ in Aqueous Acetonitrile

  • Li, Yinan;Yoon, Ung-Chan;Hyun, Myung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.122-126
    • /
    • 2011
  • A new phosphorescent cyclometalated heteroleptic iridium (III) complex with an ancillary ligand of 4-azacrownpicolinate was prepared and its metal ion selective phosphorescent chemosensing behavior was investigated. The new iridium (III) complex exhibits notable phosphorescence quenching for Hg2+ in aqueous 50% acetonitrile solution with respect to the selective phosphorescent detection of various metal ions including $Li^+,Na^+,K^+,Cs^+,Mg^{2+},Ca^{2+},Ba^{2+},Fe^{2+},Ni^{2+},Cu^{2+},Zn^{2+},Ag^+,Pb^{2+},Cd^{2+},Cr^{2+},Cr^{3+}$ and $Hg^{2+}$. The phosphorescence quenching for $Hg^{2+}$ increased linearly with increasing concentration of $Hg^{2+}$ in the range of $10{\mu}M-700{\mu}M$ even in the presence of other metal ions, except for $Cu^{2+}$. Consequently, the new iridium (III) complex has the potential to be utilized for the determination of parts per million levels of $Hg^{2+}$ in aqueous acetonitrile media.