• Title/Summary/Keyword: Phosphorescent line marking

Search Result 3, Processing Time 0.016 seconds

Performance Analysis of Laboratory and Field Luminance for Phosphorescent Line Marking and Preliminary Study of Luminance Analysis Using Digital Images (축광노면표시의 실내 및 현장 휘도 성능분석과 디지털이미지를 이용한 휘도분석 사전연구)

  • Kim, Sang Tae;Lee, Yong Mun;Kim, Heung Rae;Choi, Kee Choo
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.145-152
    • /
    • 2016
  • OBJECTIVES : Visibility at night can be improved by using retroreflection for short distances and phosphorescent line markings for long distances. In this study, we analyzed the characteristics of the phosphorescent line marking through a laboratory luminance test. Field performance analysis was performed through tests conducted on the road. We also examined the luminance measurement methods using the digital image obtained during the phosphorescent visibility evaluation. METHODS : In this study, the laboratory luminance test of the phosphorescent line marking was conducted using seven specimens to characterize the luminance changes according to the type of the glass beads, the thickness of the phosphorescent line marking, and the brightness and irradiation time of the light source. Phosphorescent and general line markings were made at 150 m to investigate the field luminance performance. A preliminary review of the luminance measurement methods was made using a digital image from a digital single-lens reflex (DSLR) camera. The measured luminance ratio of the general and the phosphorescent line markings was compared with the calculated luminance ratio using luminance analysis. RESULTS : Through the laboratory luminance test, it was seen that the change in luminance, which corresponds to the brightness of the light source, appears large but the influence of the thickness and irradiation time is low. The field performance test of the phosphorescent line marking conducted on the road involved measuring the luminance on the day the marking was made and 7 days after the marking was made. The luminance was found to be $190mcd/m^2$ at 30 min after sunset and approximately $10-12mcd/m^2$ 4h after sunset. The results of the luminance test were captured using a digital image for each time group. The luminance ratio of the phosphorescent line marking, when compared to that of the general line marking, showed a similar trend within a 13% maximum error. Additionally, when this luminance ratio is compared to the direct field measurement, it could be confirmed that the luminance ratio, as captured in the digital image, showed a similar tendency. CONCLUSIONS : 1) The change in luminance corresponding to the brightness of the light source is significant in comparison with that corresponding to the thickness and the irradiation time. In addition, the results of the field test for the phosphorescent line marking satisfied the phosphorescent fire protection standard. 2) We examined the validity of the luminance measurement method using a digital image and we concluded that the change in the luminance ratio shows a similar tendency in both the cases. The results can form the basis for luminance measurement methodology for the construction and maintenance of phosphorescent line markings.

Determination of Optimal Mixing Ratio of Phosphorescent Pigment to Develop Phosphorescent Paint for Road Line Marking (도로의 축광차선 도료 개발을 위한 축광안료 최적 배합비 산정에 관한 연구)

  • Lee, Yong Mun;Kim, Sang Tae;Kim, Heung Rae
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.67-73
    • /
    • 2015
  • PURPOSES : This study was conducted to derive the optimum mixing ratio of phosphorescent pigment for the development of phosphorescent line marking. METHODS: In this study, we utilized a literature review and case study methodology, to describe the domestic and foreign state of practice for the production and mixing of phosphorescent pigment for use in line marking. The optimal mixing ratio was derived by comparing the reduction in luminance over time for the various phosphorescent pigment mixing ratios identified in the literature. In addition, performance and construction characteristics were analyzed using field testing techniques. RESULTS : The results were as follows: 1) the results of the luminance performance standards tests showed that all of the phosphorescence test specimens satisfied the phosphorescent fire protection standard. As the phosphorescent pigment mixing ratio increased, the luminance value increased, 2) the luminance reduction rate was minimum at the mixing ratio of 50%. However, when compared to a mixing ratio 40%, a small difference was recorded, the luminance reduction rate from the mixing ratio of 40% is judged as being converged. Therefore, in view of the economic efficiency, it was determined that the optimal mixing ratio was 40%, 3) as a result of construction on the field, a mixing ratio of 40% was found to have a higher luminance value than the general line marking for up to three hours after sunset, 4) it was found that the phosphorescent line markings without glass beads spraying had a higher luminance value than the phosphorescent line markings with glass beads spraying. CONCLUSIONS : Through the results of the basic experiments of the line markings obtained by blending a phosphorescent pigment, the results could be applied to play an important role in the development of phosphorescent line marking paint technology and in establishing application planning for on-site construction characteristics.

Night Visibility Evaluation of Phosphorescent Road Line Markings (축광 노면표시의 야간 시인성 평가를 위한 기초 연구)

  • Lee, Yong Mun;Kim, Sang Tae;Jeong, Wang Seong;Kim, Heung Rae
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.69-75
    • /
    • 2016
  • PURPOSES : In this study, we evaluated changes in the retroreflectivity and luminance of phosphorescent road line markings with changes in glass beads and line marking thickness. METHODS : The color of line markings affects their retroreflectivity. Using a chromaticity test, we conducted the analysis of whether phosphorescent road line markings adhered to the "KS M 6080" standard. Then, we measured the dry retroreflectivity and wet retroreflectivity for various glass bead refractive indices. We conducted wet retroreflectivity test using the EN 1436 standard as the basis. We also conducted luminance tests for different glass bead refractive indices and line marking thicknesses. RESULTS : 1. Phosphorescent road line markings specimens satisfied the "KS M 6080" standard. 2. In dry retroreflectivity test, phosphorescent road line markings sprayed with glass beads satisfied the national police agency standard ($240mcd/(m^2{\cdot}Lux)$). Wet retroreflectivity test results showed that except for one type of No.1 glass beads, phosphorescent road line markings specimens sprayed with glass beads of one type of No.3 and two types of No.1 satisfied the national police agency standard ($100mcd/(m^2{\cdot}Lux)$). 3. Phosphorescent road line markings had higher retroreflectivity than non-phosphorescent road line markings in the dry condition. 4. Phosphorescent road line markings sprayed with glass beads demonstrated improved luminance. Luminance increased with higher glass bead refractive index and with increased line marking thickness. However, when the thickness crossed a certain threshold, phosphorescence ceased to increase; this is a characteristic of the phosphorescence phenomenon. CONCLUSIONS : Visibility across short distances can be ensured when phosphorescent road line markings are sprayed with glass beads, because of the retroreflection phenomenon. It is also possible to ensure far visibility using phosphorescent road line markings.