• Title/Summary/Keyword: Phosphor single crystal

Search Result 21, Processing Time 0.026 seconds

Synthesis and luminescent properties of $Er^{3+}$ doped $CaZrO_3$ long persistent phosphors ($Er^{3+}$를 첨가한 $CaZrO_3$ 축광성 형광체의 합성 및 발광 특성 분석)

  • Park, Byeong-Seok;Choi, Jong-Koen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.27-32
    • /
    • 2008
  • Novel long persistent phosphors of $CaZrO_3:Er^{3+}$ have been synthesized by traditional solid state reaction method. The long persistent phosphor crystalline particles were characterized by the X-ray diffraction (XRD), photoluminescence spectrophotometer, thermoluminescence (TL) and luminance meter. The results reveal that the samples are composed of single $CaZrO_3$ phase. The broadband emission spectra of 446 nm peak and 550 nm peak was revealed by synthesized at high temperature in $N_2$ gas. Green long persistent phosphors have been observed in the sys_em for over 6 h after UV irradiation (254 nm). The main emission peak was ascribed to $Er^{3+}$ ions transition from $^5D_{5/2}{\rightarrow}^4F_{9/2},\;^2H_{12/2},\;^4S_{3/2}{\rightarrow}^4I_{13/2}\;and\;^2G_{9/2}{\rightarrow}^4I_{13/2}$, and the afterglow may be ascribed to the suitable trap centers in the $CaZrO_3$ host lattice.

Preparation of Ba2Mg(PO4)2:Eu Phosphors and Their Photoluminescence Properties Under UV Excitation (Ba2Mg(PO4)2:Eu 형광체의 합성과 자외선 여기하의 발광특성)

  • Tae, Se-Won;Jung, Ha-Kyun;Choi, Sung-Ho;Hur, Nam-Hwi
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.623-627
    • /
    • 2008
  • For possible applications as luminescent materials for white-light emission using UV-LEDs, $Ba_2Mg(PO_4)_2:Eu^{2+}$ phosphors were prepared by a solid state reaction. The photoluminescence properties of the phosphor were investigated under ultraviolet ray (UV) excitation. The prepared phosphor powders were characterized to from a single phase of a monoclinic crystalline structure by a powder X-ray diffraction analysis. In the photoluminescence spectra, the $Ba_2Mg(PO_4)_2:Eu^{2+}$ phosphor showed an intense emission band centered at the 584 nm wavelength due to the f-d transition of the $Eu^{2+}$ activator. The optimum concentration of $Eu^{2+}$ activator in the $Ba_2Mg(PO_4)_2$ host, indicating the maximum emission intensity under the excitation of a 395 nm wavelength, was 5 at%. In addition, it was confirmed that the $Eu^{2+}$ ions are substituted at both $Ba^{2+}$ sites in the $Ba_2Mg(PO_4)_2$ crystal. On the other hand, the critical distance of energy transfer between $Eu^{2+}$ ions in the $Ba_2Mg(PO_4)_2$ host was evaluated to be approximately 19.3 A. With increasing temperature, the emission intensity of the $Ba_2Mg(PO_4)_2$:Eu phosphor was considerably decreased and the central wavelength of the emission peak was shifted toward a short wavelength.

Synthesis and Luminescence of Sr2Si5N8:Eu2+ Red Phosphor for High Color-Rendering White LED (고연색 LED용 적색 Sr2Si5N8:Eu2+ 형광체의 합성 및 발광특성 연구)

  • Lee, Sung Hoon;Kim, Jong Su;Kang, Tae Wook;Ryu, Jong Ho;Lee, Sang Nam
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.11-15
    • /
    • 2017
  • Red phosphors, $Sr_2Si_5N_8:Eu^{2+}$, were synthesized as a single-phase crystal structure by optimizing carbon and $Eu^{2+}$ contents in a carbothermal reduction nitridation method. With increasing $Eu^{2+}$ contents, the photoluminescence spectra were red-shifted from 600 nm peak for 1 mol% for to 700 nm for 7 mol%. It was suggested that this red shift is attributed to the energy transfer from one low-energy sited $Eu^{2+}$ (1) to other high-energy sited $Eu^{2+}$ (2). Finally, the best red sample (620 nm emission peak and 80 nm half width for 3 mole% of $Eu^{2+}$) was packaged on a Blue LED together with two additional green and yellow phosphors, the fabricated White LED showed a high color-rendering index of 90 and white color coordinates of x= 0.321 and y = 0.305.

  • PDF

Research on Afterglow Brightness of Sr4-(x+y+z)Al14O25 : Eux, Dyy, Agz by Solid State Synthesis (고상법으로 합성한 Sr4-(x+y+z)Al14O25 : Eux, Dyy, Agz계 축광성 형광체 장잔광의 연구)

  • Kim, Seung-woo;Kim, Jung-sik
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.348-354
    • /
    • 2011
  • Long-lasting brightness $Sr_{4}Al_{14}O_{25}$ : $Eu^{2+}$, $Dy^{3+}$, $Ag^{+}$ phosphor was synthesized by modified solid state reaction and its photoluminescence was investigated. $Sr(NO_3)_{2}$ and $Al(NO_3)_3{\cdot}9H_{2}O$ as starting materials, and $B_{2}O_{3}$ as a flux were mixed with $Eu_{2}O_{3}$ as an activator, $Dy_{2}O_{3}$ as a coactivator, and $AgNO_{3}$ as a charge compensator. The crystalline of target powder showed a single-phase $Sr_{4}Al_{14}O_{25}$ by the XRD characterization and the average particle size was about 20-30 ${\mu}m$ from the FE-SEM observation. $Ag^{+}$ ion doping effects (0-0.06 mol) on $Sr_{4}Al_{14}O_{25}:Eu^{2+},\;Dy^{3+},\;Ag^{+}$ phosphor were measured by photoluminescence spectrometer and luminescence meter. The of photoluminescence intensity of the $Sr_{3.64}Al_{14}O_{25}:Eu_{0.11},\;Dy_{0.22},\;Ag_{0.03}$ phosphor was higher than other compositions and afterglow brightness was 0.186 $cd/m^{2}$.

Photoluminescence of $SrTiO_3$: $Pr^{3+}$,$Ga^{3+}$ ($SrTiO_3$: $Pr^{3+}$,$Ga^{3+}$의 발광특성)

  • 변재동;이용제;장보윤;이현덕;유영문;류선윤
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.8
    • /
    • pp.705-709
    • /
    • 2001
  • SrTiO$_3$에 Pr$^{3+}$ 이온, 또는 Pr$^{3+}$ 이온과 Ga$^{3+}$ 이온을 첨가하여 합성한 형광체와 floating zone method로 성장시킨 단결정의 PL 특성을 조사하였다. 분말 형광체와 단결정에서 모두 Ga$^{3+}$ 이온이 함께 첨가되었을 때 적색 발광 세기가 크게 증가하였다. XRF(X-Ray Fluorescence) 측정결과 Ga$^{3+}$ 이온이 함께 첨가되었을 때 SrTiO$_3$결정 격자내의 Pr$^{3+}$ 이온의 농도가 증가하였다. Ga$^{3+}$ 이온이 함께 첨가되었을 때 적색 발광 세기가 증가하는 것은 첨가된 Ga$^{3+}$ 이온이 결정내 발광 center인 Pt$^{3+}$ 이온의 농도가 증가시켰기 때문이며, 또한 Ga$^{3+}$ 이온이 hole trap center로 작용하기 때문인 것으로 생각된다.

  • PDF

Optical and Structural Analysis of BaSi2O2N2:Eu Green Phosphor for High-Color-Rendering Lighting (고연색 백색 광원용 BaSi2O2N2:Eu 형광체의 광학·구조 특성 분석)

  • Lee, Sunghoon;Kang, Taewook;Kang, Hyeonwoo;Jeong, Yongseok;Kim, Jongsu;Heo, Hoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.437-442
    • /
    • 2019
  • Green $BaSi_2O_2N_2:0.02Eu^{2+}$ phosphor is synthesized through a two-step solid state reaction method. The first firing is for crystallization, and the second firing is for reduction of $Eu^{3+}$ into $Eu^{2+}$ and growth of crystal grains. By thermal analysis, the three-time endothermic reaction is confirmed: pyrolysis reaction of $BaCO_3$ at $900^{\circ}C$ and phase transitions at $1,300^{\circ}C$ and $1,400^{\circ}C$. By structural analysis, it is confirmed that single phase [$BaSi_2O_2N_2$] is obtained with Cmcm space group of orthorhombic structure. After the first firing the morphology is rod-like type and, after the second firing, the morphology becomes round. Our phosphor shows a green emission with a peak position of 495 nm and a peak width of 32 nm due to the $4f^65d^1{\rightarrow}4f^7$ transition of $Eu^{2+}$ ion. An LED package (chip size $5.6{\times}3.0mm$) is fabricated with a mixture of our green $BaSi_2O_2N_2$, and yellow $Y_3Al_5O_{12}$ and red $Sr_2Si_5N_8$ phosphors. The color rendering index (90) is higher than that of the mixture without our green phosphor (82), which indicates that this is an excellent green candidate for white LEDs with a deluxe color rendering index.

Photoluminescence and long after -glow characteristics of $Sr_{1-x}Eu_xAl_2O_4$phosphor ($Sr_{1-x}Eu_xAl_2O_4$ 형광체의 발광 및 장잔광특성)

  • 이영기;김병규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.493-497
    • /
    • 1998
  • The synthesis of $Sr_{1-x}Eu_xAl_2O_4$ (x=0.005~0.2;mol%) phosphors and its properties of both photoluminescence and long-phosphorescent were investigated as a function of $Eu_2O_3$ composition. The peak wavelengths (520 nm) of phosphorescence spectra were found not to vary with the $Eu_2O_3$ composition (x) of $Sr_{1-x}Eu_xAl_2O_4$ crystals. Single phase of $SrAl_2O_4$ which determined by XRD and PL was obtained with the compositions of x<0.05 mol%. After the removal of light excitation (360 nm), the excellent after-glow characteristics of the phosphorescence were obtained with the $Eu_2O_3$ compositions of x<0.05 mol%, although the after-glow intensities for all phosphors vary exponentially with the times.

  • PDF

The Luminescent Mechnism and Cathodoluminescence of $CaTiO_3$:Pr Synthesized with CaO and $TiO_2$ Powders (CaO와 $TiO_2$분말로 합성된 $CaTiO_3$:Pr형광체의 발광구조 해석과 음극선 발광특성)

  • 박용규;한정인;곽민기;이인규;김대현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.8
    • /
    • pp.646-651
    • /
    • 1998
  • In this present study, the luminescence characteristics and mechanism of energy $CaTiO_3$:Pr phosphor were studied using disk specimens sintered at various temperatures and envirenment. A single-phase $CaTiO_3$:Pr was synthesized by sintering above 140$0^{\circ}C$ and its crystal structure was found to be perovskite orthorhombic. A dominant peak around 360 nm and a broad peak around 395 nm were observed in the PLE(Photoluminescence Excitation) spectrum of $CaTiO_3$:Pr with fixed emission wavelength at 612 nm, the decay time of 360 nm excitation was found to be longer than that of 395 nm excitation. From this result, it is assumed that the free carrier excited to 360 nm is transferred to 395 nm energy level. Therefore, the decrease in 395 nm intensity observed in CaTiO$_3$:Pr specimens sintered in Ar gas environment induced shorter decay time and improved CL luminescence.

  • PDF

Study on Quantum Dot Components and Their Use in High Color Rendering Lighting (양자점 부품과 이를 활용한 고연색성 조명 연구)

  • Jae-Hyeon Ko
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.3
    • /
    • pp.95-106
    • /
    • 2024
  • In the 21st century, white light-emitting diodes (LEDs) are widely used as backlighting for liquid crystal displays and as a light source for general illumination. However, white LEDs used in lighting often use a single yellow phosphor on top of a blue LED chip, which lacks the ability to reproduce natural colors in objects under conventional illumination accurately. Recently, researchers have been actively working on realizing high color-rendering lighting by incorporating red quantum dots to improve the spectrum in the long-wavelength band, which is deficient in conventional white LEDs. In particular, how to develop and apply remote quantum dot components to ensure long-term reliability is currently under active research. This paper introduces recent research on remote quantum dot components and the current status of developing high color-rendering lightings with them. Especially, we focus on various factors that are important to consider in optimizing the optical structure of the quantum dot components and discuss the future directions and prospects of research for high color-rendering lighting technology.

Effects of $Dy_2$$O_3$ composition for the photoluminescence and long-phosphorescent characteristics of stuffed tridymite $SrAl_2$$O_4$ : $Eu^{2+}$ phosphors (Stuffed tridymite계 $SrAl_2$$O_4$ : $Eu^{2+}$ 형광체의 발광 및 장잔광특성에 미치는 $Dy_2$$O_3$의 영향)

  • 이영기;김병규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.2
    • /
    • pp.71-77
    • /
    • 2001
  • We investigated photoluminescence, long-phosphorescent and crystalline properties with various $Dy_2$$O_3$ compositions (0.0~9.5mol%) in $SrAl_2$$O_4$ : $Eu^{2+}$,$Dy^{3+}$ phosphor powders prepared by the solid state reaction. The highest emission wavelength (520nm) of photoluminescence spectra was not affected by the Dy doping concentrations. The$SrAl_2$$O_4$single phase which was determined by X-ray diffraction and photoluminescence was appeared for the concentrations of $Dy_2$$O_3$$\leq$1.0 mol%. After removal of the pulsed Xe-lamp excitation (360nm), also, excellent long phosphorescent properties of the phosphors were obtained with the concentrations of $Dy_2$$O_3$$\leq$1.0mol%, although the decay time for all phosphors decrease exponentially.

  • PDF