• Title/Summary/Keyword: Phosphonium cation

Search Result 4, Processing Time 0.022 seconds

Synthesis of 18F-labeled Novel Phosphonium cations as PET Myocardial Perfusion Imaging Agents: Pilot Imaging Studies

  • Ayoung Pyo;Jung-Joon Min;Dong-Yeon Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.2
    • /
    • pp.63-70
    • /
    • 2022
  • The development of myocardial perfusion imaging (MPI) agents has been motivated because coronary artery disease has been one of the leading causes of death worldwide since the 1960s. Several positron emission tomography (PET) MPI agents were developed, and 18F-labeled phosphonium cations were reported actively among them. In this study, we synthesized novel 18F-labeled phosphonium cations, (5-[18F]fluoropentyl)diphenyl(pyridin-2-yl)phosphonium and (2-(2-[18F]fluoroethoxy)ethyl)diphenyl(pyridin-2-yl)phosphonium, and evaluated potential as MPI agents. Two labeled compounds were synthesized via nucleophilic substitution reactions of 18F-fluoride with the appropriate tosylate precursor in the presence of Kryptofix 2.2.2 and K2CO3. MicroPET studies were performed in normal rats to evaluate in vivo distribution of radiolabeled phosphonium cations for 60 min. The radiolabeled compounds were synthesized with 5%-10% yield. The radiochemical purity of labeled compounds was > 98% by analytical HPLC, and the specific activity was > 11.8 GBq/µmol. The result of microPET studies of these labeled compounds in rats showed intense uptake in the myocardium at 30 and 60 min. The results suggest that these 18F-labeled novel phosphonium cations would have potential as promising candidates for myocardial perfusion imaging.

Electrochemical properties of gel copolymer- electrolyte based on Phosphonium ionic liquid

  • Cha, E.H.;Lim, S.A.;Park, J.H.;Kim, D.W.;Park, J.H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.304-308
    • /
    • 2008
  • Noble Poly (lithium 2-acrylamido-2-methyl propane sulfonate) and its copolymer with N-vinyl formamide based on trihexyl (tetradecyl) phosphonium acetate [$(C_6H_{13})_3$ P ($C_{14}H_{29}$) $CH_3COO$; $P_{66614}$ $CH_3COO$] and trihexyl (tetradecyl)phosphonium bis(trifluoromethane sulfonyl) amide ([$(C_6H_{13})_3P(C_{14}H_{29})$] [TFSA];$P_{66614}TFSA$) were prepared and analyzed to determine their characteristics and properties. The ionic conductivity of a copolymer based $P_{66614}TFSA$ ionic liquid system exhibits a higher conductivity ($8.9{\times}10^{-5}Scm^{-1}$) than that of a copolymer based $P_{66614}CH_3COO$ system ($1.57{\times}10^{-5}Scm^{-1})$. The charge on the TFSA anion is spread very diffusely through the S-N-S core and particularly in the trifluoromethane groups, and this diffusion results in a decreased interaction between the cation and the anion. The viscosity of $P_{66614}TFSA$ (39 cP at 343 K) and $P_{66614}CH_3COO$ (124 cP at 343 K), which is very hydrophobic, was fairly high. High viscosity leads to a slow rate of diffusion of redox species. The ionic conductivity of copolymer of a phosphonium ionic liquid system also exhibits higher conductivity than that of a homopolymer system. Phosphonium ionic liquids were thermally stable at temperatures up to $400^{\circ}C$.

Electrochemical Characterization of Lithium Polyelectrolyte Based on Ionic Liquid

  • Cha, E.-H.;Lim, S.-A.;Kim, D.-W.;Choi, N.-S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.271-275
    • /
    • 2009
  • Five novel lithium polyelectrolyte-ionic liquid systems, using poly (lithium 2-acrylamido-2-methyl propanesulfonate; PAMPSLi) were prepared and their electrochemical properties were measured. The ionic conductivity of the PAMPSLi/1-ethyl-3-methylimidazolium tricyano methanide (emImTCM) system was exhibited high conductivity (1.28 $\times$ $10^{-3}$ $S/cm^{-1}$). The high conductivity and low viscosity of PAMPSLi/emImTCM system is due to the high flexibility of imidazolium cation and dissociation of lithium cation from the polymer chains. The PAMPSLi/N,N-dimethyl-N-propyl-Nbutylammonium tricyanomethanide ($N_{1134}TCM$) and PAMPSLi/N, N-dimethyl-N-propyl-N-butylammonium dicyanamide ($N_{1134}DCA$) systems showed fairly high conductivity (6.3 $\times$ $10^{-4}$ $S/cm^{-1}$, 6.0 $\times$ 10.4 S/cm.1). PAMPSLi/Trihexyl (tetradecyl) phosphonium bis (trifluoromethane sulfonyl) amide ($P_{66614}TFSA$) exhibited low conductivity (2.22 $\times$ $10^{-5}$ $Scm^{-1}$) and thermally stable over 400$^{\circ}C$.

Studies of the Reactions between P-donors and [$(exo-6-R-\eta^5-2-MeO{\cdot}C_6H_5)Mn(CO)_2NO]PF_6$

  • Taeg Hwan Hyeon;Taek-Mo Chung;Young Keun Chung
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.6
    • /
    • pp.500-503
    • /
    • 1989
  • Synthetic studies have been carried out for the addition or substitution of phosphorus nucleophiles to the cation $[(exo-6-R-{\eta}^ {5_-}2-MeO-C_6H_5)Mn(CO)_2NO]PF_6,$ 2. $PPh_3$ reacts with 2 to yield the CO displaced product and $MePPh_2$ attacks the dienyl ring of 2 to yield the phosphonium adduct or the metal to give the CO displaced depending upon the reaction temperatures. Nucleophilic addition of HPPh2 to the dienyl ring of 2 gives a neutral substituted product. $P(OMe)_3$ reacts with 2 to yield a mixture of ring adduct and CO displaced product at room temperature. $At - 20^{\circ}C,\;P(OMe)_3$ attacks the dienyl ring of 2 to give a posphonium adduct, which underwent Arbuzov reaction. This reaction affords a new route to the phosphonate complexes.