• 제목/요약/키워드: Phospholipase D(PLD)

Search Result 72, Processing Time 0.028 seconds

Effect of Extremely Low Frequency Electromagnetic Fields (EMF) on Phospholipase Activity in the Cultured Cells

  • Song, Ho-Sun;Kim, Hee-Rae;Ko, Myoung-Soo;Jeong, Jae-Min;Kim, Yong-Ho;Kim, Myung-Cheul;Hwang, Yeon-Hee;Sohn, Uy-Dong;Gimm, Yoon-Myoung;Myung, Sung-Ho;Sim, Sang-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.427-433
    • /
    • 2010
  • This study was conducted to investigate the effects of extremely low frequency electromagnetic fields (EMF) on signal pathway in plasma membrane of cultured cells (RAW 264.7 cells and RBL 2H3 cells), by measuring the activity of phospholipase $A_2$ ($PLA_2$), phospholipase C (PLC) and phospholipase D (PLD). The cells were exposed to the EMF (60 Hz, 0.1 or 1 mT) for 4 or 16 h. The basal and $0.5\;{\mu}M$ melittin-induced arachidonic acid release was not affected by EMF in both cells. In cell-free $PLA_2$ assay, we failed to observe tbe change of $cPLA_2$ and $sPLA_2$ activity. Also both PLC and PLD activities did not show any change in the two cell lines exposed to EMF. This study suggests that the exposure condition of EMF (60 Hz, 0.1 or 1 mT) which is 2.4 fold higher than the limit of occupational exposure does not induce phospholipases-associated signal pathway in RAW 264.7 cells and RBL 2H3 cells.

Histamine Release by Hydrochloric Acid is Mediated via Reactive Oxygen Species Generation and Phospholipase D in RBL-2H3 Mast Cells

  • Kim, Chang-Jong;Lee, Seung-Jun;Seo, Moo-Hyun;Cho, Nam-Young;Sohn, Uy-Dong;Lee, Moo-Yeol;Shin, Yong-Kyoo;Sim, Sang-Soo
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.675-680
    • /
    • 2002
  • In order to investigate the underlying mechanism of HCI in oesophagitis, the inflammatory response to HCI was observed in RBL-2H3 mast cells. Rat basophilic leukemia (RBL-2H3) cells were used to measure histamine release, arachidonic acid (AA) release, reactive oxygen species (ROS) and peroxynitrite generation induced by HCI. Exogenous HCl increased the level of histamine release and ROS generation in a dose dependent manner, whereas it decreased the spontaneous release of [$^3$H] M and the spontaneous production of peroxynitrite. Mepacrine (10 $\mu$M), oleyloxyethyl phosphorylcholine (10 $\mu$M) and bromoenol lactone (10 $\mu$M) did not affect both the level of histamine release and ROS generation induced by HCI. U73122 (1 $\mu$M), a specific phospholipase C (PLC) inhibitor did not have any influence on level of histamine release and ROS generation. Propranolol (200 $\mu$M), a phospholipase D (PLD) inhibitor, and neomycin (1 mM), a nonspecific PLC and PLD inhibitor, significantly inhibited both histamine release and ROS generation. Diphenyleneiodonium (10 $\mu$M), a NADPH oxidase inhibitor, and tiron (5 mM), an intracellular ROS scavenger significantly inhibited the HCI-induced histamine release and ROS generation. These findings suggest that the inflammatory responses to HCI is related to histamine release and ROS generation, and that the ROS generation by HCI may be involved in histamine release via the PLD pathway in RBL-2H3 cells.

Phospholipases Dl and D2 Regulate Different Phases of Exocytosis in Mast Cells

  • Lee, Jun-Ho;Chang, Sung-Ho;Kim, Young-Mi;Her, Her Erk;Choi, Wahn-Soo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.135.1-135.1
    • /
    • 2003
  • The rat mast cell line RBL-2H3 contains both phospholipase D (PLD)1 and PLD2. Previous studies with this cell line indicated that expressed PLD1 and PLD2 are both strongly activated by stimulants of secretion. We now show by use of PLDs tagged with enhanced green fluorescent protein that PLD1, which is largely associated with secretory granules, redistributes to the plasma membrane in stimulated cells by processes reminiscent of exocytosis and fusion of granules with the plasma membrane. (omitted)

  • PDF

Enzymatic Hydrolysis of p-Nitrophenyl Phsphoryl Derivatives by Phospholipase D

  • Cha, Joo-Yeun;Lee, Ji-Eun;Koh, Eun-Hie;Choi, Myung-Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.1001-1003
    • /
    • 1994
  • A series of phosphodiesters of p-nitrophenyl phosphoryl derivatives were synthesized and used as a model substrate for phospholipase D (PLD). The phosphodiester substrates were synthesized from p-nitrophenyl phosphorodichloridate and corresponding alcohols with different chain lengths and polar groups. To measure the activity of PLD, either spectroscopic method for p-nitrophenol or pH-stat titration method was employed. For each substrate, effects of substrate concentration, pH, and $Ca^{2+}$ ion were examined. The kinetic parameters $V_{max}$ for the different substrates were varied depending on the chain lengths or charge of the alcohols. No calcium effect was observed in the hydrolysis of neutral and negatively charged alcohol derivatives, while positively charged choline derivative showed a strong $Ca^{2+}$ ion dependence.

Effects of Ginsenosides on the Mechanism of Histamine Release in the Guinea Pig Lung Mast Cells Activated by Specific Antigen-Antibody Reactions

  • Ro, Jai-Youl;Ahn, Young-Soo;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.445-456
    • /
    • 1997
  • We previously reported that some components of ginsenosides decreased mediator releases evoked by the activation of mast cells with specific antigen-antibody reactions. This study aimed to assess the effects of ginsenosides ($Rb_2$, Re) on the mechanism of histamine release in the mast cell activation. We partially purified guinea pig lung mast cells by using enzyme digestion, the rough and the discontinuous percoll density gradient method. Mast cells were sensitized with $IgG_1$ and challenged with ovalbumin (OA). Histamine was assayed by fluorometric analyzer, leukotrienes by radioimmunoassay. Phospholipase D (PLD) activity was assessed more directly by the production of $[^3H]phosphatidylbutanol$ (PBut) which was produced by PLD-mediated transphosphatidylation in the presence of butanol. The amount of 1,2- diacylglycerol (DAG) were measured by the $[^3H]DAG$ labeled with $[^3H]palmitic$ acid or $[^3H]myristic$ acid. Pretreatment of $Rb_2$ ($300\;{\mu}g$) significantly decreased histamine release by 60%, but Re ($300\;{\mu}g$) increased histamine release by 34%. Leukotrienes release in $Rb_2$ was decreased by 40%, Re was not affected in the leukotrienes release during mast cell activations. An increasing PLD activity during mast cell activation was decreased by the dose-dependent manner in the pretreatment of $Rb_2$, but Re pretreatment facilitated the increased PLD activity during mast cell activation. The amount of DAG produced by phospholipase C (PLC) activity was decreased by $Rb_2$ pretreatment, but Re pretreatment was not affected. The amount of mass DAG was decreased by $Rb_2$ and Re pretreatment during mast cell activation. The data suggest that $Rb_2$ purified from Korean Red Ginseng Radix inhibits the DAG which is produced by the activation of mast cells with antigen-antibody reactions via both phosphatidylinositide-PLC and phosphatidylcholine-PLD systems, and then followed by the inhibition of histamine release. However, Re increases histamine release by stimulation of DAG production, which is mediated by phosphatidylcholine-PLD system rather than by phosphatidylinositide-PLC system, but inhibits the mass DAG production. Thus, it could be inferred that other mechanisms play a role in the increase of histamine release during mast cell activation.

  • PDF

Composition Effect of the Outer Layer on the Vesicle Fusion Catalyzed by Phospholipase D

  • Park, Jin-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3509-3513
    • /
    • 2014
  • Phospholipase D (PLD) catalyzed the generation of phosphatidic acid (PA) from phosphatidylcholine (PC) at the outer layer of the vesicles prepared through layer by layer via a double emulsion technique. The generation induced a curvature change in the vesicles, which eventually led them to fuse each other. The ratio of two-fatty-acid-tail ethanolamine (PE) to one-fatty-acid-tail ethanolamine (PE) was found to acquire the condition where the mixed-phospholipid vesicles were stable identically with pure two-fatty-acid-tail PC. The effect of the outer-layer mixture on the PLD-induced vesicle fusion was investigated using the fluorescence intensity change. 8-Aminonaph-thalene-1,3,6-trisulfonic acid disodium salt (ANTS) and p-Xylene-bis(N-pyridinium bromide) (DPX) were encapsulated in the vesicles, respectively, for the quantification of the fusion. The fluorescence scale was calibrated with the fluorescence of a 1/1 mixture of ANTS and DPX vesicles in NaCl buffer taken as 100% fluorescence (0% fusion) and the vesicles containing both ANTS and DPX as 0% fluorescence (100% fusion), considering the leakage into the medium studied directly in a separate experiment using vesicles containing both ANTS and DPX. The fusion data for each composition were acquired with the subtraction of the leakage from the quenching. From the monitoring, the vesicle fusion caused by the PLD reaction seems dominantly to occur rather than the vesicle lysis, because the composition effect on the fusion was observed identically with that on the change in the vesicle structure. Furthermore, the diameter measurements also support the fusion dominancy.

Reactivity of Phospholipase D toward Phosphatidylcholines with Different Length of Acyl Chains (길이가 틀린 아실사슬을 갖는 콜린 인지질에 대한 포스포리파제 D의 반응성)

  • Koh, Eun-Hie;Park, Insook
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.9
    • /
    • pp.630-634
    • /
    • 1996
  • In order to explore a substrate specificity for cabbage phospholipase D, we examined the PLD reactivity toward the phosphatidylcholines with different chain length of acyl groups. The selected acyl chains were the saturated fatty acid of $C_8:0,\;C_{12}:0,\;C_{16}:0,\;C_{20}:0$. The reactivity of these phospholipids were dependent largely on the ratio of PC : SDS. The PC : SDS ratio showing the optimal PLD activity were found to be 1:1.4, 1:2.2, 1:2.5, and 1:3.6 respectively as the increase of the acyl chain length. Likewise the optimum temperature for the maximal PLD activity were altered markedly to 25$^{\circ}C$, 30$^{\circ}C$, 35$^{\circ}C$, 45$^{\circ}C$ when the length of acyl chains increased. On the contrary the pH and concentration of $Ca^{2+}$ necessary for the optimum PLD activity were not altered significantly. The kinetic parameter $V_{max}$ for short acyl chain substrate was greater than the values for the longer acyl chain, which indicates the fastest rate of hydrolysis. By the same token, the reactivity of longer chain substrate became slower for the hydrolysis activity.

  • PDF

Phosphatidic Acid Production by PLD Covalently Immobilized on Porous Membrane (공유결합으로 다공성 막에 고정화된 PLD에 의한 포스퍼티딕산 생산)

  • Park, Jin-Won
    • Clean Technology
    • /
    • v.21 no.4
    • /
    • pp.224-228
    • /
    • 2015
  • Phospholipase D (PLD) was immobilized on a submicro-porous membrane through covalent immobilization. The immobilization was conducted on the porous membrane surface with the treatment of polyethyleneimine, glutaraldehyde, and the anhydrase, in sequence. The immobilization was confirmed using X-ray photon spectrometer. The pH values of phosphatidylcholine (PC) dispersion solution with buffer were monitored with respect to time to calculate the catalytic activities of PC for free and immobilized PLD. The catalytic rate constant values for free PLD, immobilized PLD on polystyrene nanoparticles, and immobilized PLD on a porous cellulose acetate membrane were 0.75, 0.64, and 0.52 s-1, respectively. Reusability was studied up to 10 cycles of PC hydrolysis. The activity for the PLD immobilized on the membrane was kept to 95% after 10 cycles, and comparable to the PLD on the nanoparticles. The stabilities for heat and storage were also investigated for the three cases. The results suggested that the PLD immobilized on the membrane had the least loss rate of the activity compared to the others. From these studies, the porous membrane was feasible as a carrier for the PLD immobilization in the production of phosphatidic acid.

Gene Cloning of Streptomyces Phospholipase D P821 Suitable for Synthesis of Phosphatidylserine

  • Moon Min-Woo;Lee Jung-Kee;Oh Tae-Kwang;Shin Chul-Soo;Kim Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.408-413
    • /
    • 2006
  • A strain, P821, with phospholipase D activity was isolated from soil and identified as a Streptomyces species. The phospholipase D enzyme was purified from a culture broth of the isolated strain using ammonium sulfate precipitation and DEAE-Sepharose, phenyl-Sepharose, and Superose 12 HR column chromatographies. The purified enzyme exhibited an optimum temperature and pH of $55^{\circ}C$ and 6.0, respectively, in the hydrolysis of phosphatidylcholine and remained stable up to $60^{\circ}C$ within a pH range of 3.5-8.0. The enzyme also catalyzed a transphosphatidylation reaction to produce phosphatidylserine with phosphatidylcholine and serine substrates. The optimum conditions for the transphosphatidylation were $30^{\circ}C$ and pH 5.0, indicating quite different optimum conditions for the hydrolysis and transphosphatidylation reactions. The gene encoding the enzyme was cloned by Southern hybridization and colony hybridization using a DNA probe designed from the conserved regions of other known phospholipase D enzymes. The resulting amino acid sequence was most similar to that of the PLD enzyme from Streptomyces halstedii (89.5%). Therefore, the enzyme was confirmed to be a phospholipase D with potential use in the production of phosphatidylserine.