• Title/Summary/Keyword: Phosphodiesterase-5 inhibitor

Search Result 64, Processing Time 0.032 seconds

Mechanism of Erectogenic Effect of the Selective Phosphodiesterase Type 5 Inhibitor, DA-8159

  • Doh, Hyoun-Mie;Shin, Chang-Yell;Son, Mi-Won;Ko, Jun-Il;Yoo, Moo-Hi;Kim, Soon-Hoe;Kim, Won-Bae
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.873-878
    • /
    • 2002
  • OA-8159, a new Phosphodiesterase (PDE) 5 inhibitor, has exhibited potent erectogenic potential in a penile erection test in rats and anesthetized dogs. In this study, we investigated the mechanism of its erectogenic activity by measuring the activity of OA-8159 against a various PDE isozymes and assessing cGMP and cAMP formation in a rabbit corpus cavernosum in vitro. DA-8159 inhibited the PDE 5 activity in rabbit and human platelets, which the $IC_{50}$ was 5.84$\pm$1.70 nM and 8.25$\pm$2.90 nM, respectively. The $IC_{50}$ of DA-8159 on PDE 1, PDE2, PDE 3 and PDE 6 were 870$\pm$57.4 nM, $101\pm$5 $\mu$M, 52.0$\pm$3.53 $\mu$M and 53.3$\pm$2.47 nM, respectively. This suggests that DA-8159 is a potent, highly selective, competitive inhibitor of PDE 5-catalyzed cGMP hydrolysis. The rates of cGMP hydrolysis catalyzed by human platelets-derived PDE 5 as a function of the cGMP concentration (5~100 nM) and two-fixed DA-8159 concentration (11.3 and 18.8 nM) were investigated in order to characterize the mode of PDE 5 inhibition by DA-8159. DA-8159 increased the apparent 4K_{m}$ value for cGMP hydrolysis but had no effect on the apparent $V_{max}$, indicating a competitive mode of inhibition. DA-8159 increased the cGMP concentrations in the rabbit corpus cavernosum dose dependently. In the presence of sodium nitroprusside (SNP), DA-8159 significantly sti\mulated the accu\mulation of cGMP when compared to the control level. This indicated that the enhancement of a penile erection by DA-8159 involved the relaxation of the cavernosal smooth \muscle by NO-sti\mulated cGMP accu\mulation. In conclusion, DA-8159 is a selective inhibitor of PDE 5-catalyzed cGMP hydrolysis and the enhancement of a penile erection by DA-8159 is mediated by the relaxation of the cavernosal smooth \muscle by the NO-sti\mulated cGMP accu\mulation.

Effects of prematuration culture with a phosphodiesterase-3 inhibitor on oocyte morphology and embryo quality in in vitro maturation

  • Cheruveetil, Mohammed Ashraf;Shetty, Prasanna Kumar;Rajendran, Arya;Asif, Muhammed;Rao, Kamini A
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.4
    • /
    • pp.352-361
    • /
    • 2021
  • Objective: The study assessed the developmental potential of germinal vesicle (GV) oocytes subjected to in vitro maturation (IVM) after prematuration culture with cilostamide (a phosphodiesterase-3 inhibitor) and the impact of cilostamide exposure on the morphology of meiosis II (MII) oocytes and subsequent embryo quality. Methods: In total, 994 oocytes were collected from 63 patients. Among 307 GV oocytes, 140 oocytes were selected for the experimental group and 130 oocytes for the control group. The denuded GV-stage oocytes were cultured for 6 hours with cilostamide in the experimental group and without cilostamide in the control group. After 6 hours, the oocytes in the experimental group were washed and transferred to fresh IVM medium. The maturational status of the oocytes in both groups was examined at 26, 36, and 48 hours. Fertilization was assessed at 18 hours post-intracytoplasmic sperm injection. Embryo quality was assessed on days 3 and 5. Results: In total, 92.1% of the oocytes remained in the GV stage, while 6.4% converted to the MI stage (p<0.01) after cilostamide exposure. In both groups, more MII oocytes were observed at 36 hours (25.8% vs. 21.5%) than at 26 hours (10.8% vs. 14.6%) and 48 hours (13% vs. 7.9%) (p>0.05). With the advent of cilostamide, blastocyst quality was better in the experimental group than in the control group (p<0.05). Conclusion: Cilostamide effectively blocked nuclear maturation and promoted cytoplasmic growth. Prematuration culture with cilostamide enabled synchronization between cytoplasmic and nuclear maturity, resulting in better blastocyst outcomes.

Regulation of histamine H2-receptor mediated Mg2+ release by phosphodiesterase inhibitors in the guinea pig hearts (기니픽 심장에서 histamine H2-수용체 자극에 의한 Mg2+ 유리에 대한 phosphodiesterase 억제제의 효과)

  • Kang, Hyung-sub;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.3
    • /
    • pp.479-487
    • /
    • 2000
  • Several recent studies demonstrate that receptor-mediated cAMP (adenosine 3',5'-monophosphate) production evokes marked change in magnesium ($Mg^{2+}$) homeostasis. The effects of dimaprit or/and phosphodiesterase (PDE) inhibitors on the $Mg^{2+}$ release from perfused guinea pig heart and collagenase-dispersed myocytes was studied to clarify an association of $H_2-histaminergic$ receptor-mediated $Mg^{2+}$ regulation with intracellular cAMP-degradation system. $Mg^{2+}$ efflux was stimulated in perfused hearts and myocytes by IBMX (3-isobutyl-1-methylxanthine), a calmodulin-sensitive PDE inhibitor, but not by RO 20-1724(4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone) or papaverine, cAMP-specific PDE inhibitors. $Mg^{2+}$ efflux was also be induced by dimaprit, a H-2-agonist. $Mg^{2+}$ effluxes induced by dimaprit were augmented by the presence of the PDE inhibitors. The augmentation of dimaprit-induced $Mg^{2+}$ effluxes by the PDE inhibitors were inhibited by ranitidine, a $H_2-antagonist$, and imipramine, a $Na^{+}-Mg^{2+}$ exchange inhibitor, in perfused hearts and myocytes and were also inhibited by amiloride in perfused hearts. These results suggest that the $H_2$-stimulated $Mg^{2+}$ effluxes from guinea pig heart can be regulated by the cytosolic nonspecific-dependent PDE systems and that it is induced by the $Na^{+}-Mg^{2+}$ exchanger stimulation.

  • PDF

Phosphodiesterase III Inhibitor Cilostazol Protects Amyloid β-Induced Neuronal Cell Injury via Peroxisome Proliferator-Activated Receptor-γ Activation (Amyloid β에 의해 유도된 신경세포 손상에 대한 phosphodiesterase III inhibitor인 cilostazol의 신경보호 효과)

  • Park, Sun-Haeng;Kim, Ji-Hyun;Bae, Sun-Sik;Hong, Ki-Whan;Choi, Byung-Tae;Shin, Hwa-Kyoung
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.647-655
    • /
    • 2011
  • The neurotoxicity of aggregated amyloid ${\beta}$ ($A{\beta}$) has been implicated as a critical cause in the pathogenesis of Alzheimer's disease (AD). It can cause neurotoxicity in AD by evoking a cascade of apoptosis to neuron. Here, we investigated the neuroprotective effects of cilostazol, which acts as a phosphodiesterase III inhibitor, on $A{\beta}_{25-35}$-induced cytotoxicity in mouse neuronal cells and cognitive decline in the C57BL/6J AD mouse model via peroxisome proliferator-activated receptor (PPAR)-${\gamma}$ activation. $A{\beta}_{25-35}$ significantly reduced cell viability and increased the number of apoptotic-like cells. Cilostazol treatment recovered cells from $A{\beta}$-induced cell death as well as rosiglitazone, a PPAR-${\gamma}$ activator. These effects were suppressed by GW9662, an antagonist of PPAR-${\gamma}$ activity, indicative of a PPAR-${\gamma}$-mediated signaling. In addition, cilostazol and rosiglitazone also restored PPAR-${\gamma}$ activity levels that had been altered as a result of $A{\beta}_{25-35}$ treatment, which were antagonized by GW9662. Furthermore, cilostazol also markedly decreased the number of apoptotic-like cells and decreased the Bax/Bcl-2 ratio. Intracerebroventricular injection of $A{\beta}_{25-35}$ in C57BL/6J mice resulted in impaired cognitive function. Oral administration of cilostazol (20 mg/kg) for 2 weeks before $A{\beta}_{25-35}$ injection and once a day for 4 weeks post-surgery almost completely prevented the $A{\beta}_{25-35}$-induced cognitive deficits, as did rosiglitazone. Taken together, our findings suggest that cilostazol could attenuate $A{\beta}_{25-35}$-induced neuronal cell injury and apoptosis as well as promote the survival of neuronal cells, subsequently improving cognitive decline in AD, partly because of PPAR-${\gamma}$ activation. The phosphodiesterase III inhibitor cilostazol may be the basis of a novel strategy for the therapy of AD.

Evaluation of electroretinogram and retinal histopathology in rabbits administered DA-8159, a selective PDE 5 inhibitor

  • Kang, Kyung-Koo;Ahn, Gook-Jun;Sohn, Yong-Sung;Shim, Hyun-Joo;Ahn, Byung-Ok;Kim, Won-Bae;Cho, Ho-Kyun
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.250.1-250.1
    • /
    • 2002
  • DA-8159. a selective inhibitor of phosphodiesterase type 5 (PDE5: IC$\sub$50/ 5ng/$m\ell$). is being developed as a new treatment for erectile dysfunction. Since DA-8159 has been shown to inhibit PDE6 enzyme (IC$\sub$53ng/$m\ell$). we evaluated the effect of DA-8159 on electroretinogram (ERG) and retinal histopathology in rabbits. The effect of oral DA-8159 (5 to 30mg/kg) on ERG recordings was investigated at pre-treatment. 1 and 5 hrs after administration in rabbits. (omitted)

  • PDF

Synthesis and Biological Studies of A Novel Series of Catechol Ether Type Derivatives as Potential Phosphodiesterase(PDE) IV Inhibitors

  • Lee, Jae-Mok;Lee, Koun-Ho;Kim, Jong-Hoon;Song, Seog-Beom;Chun, Hyung-Ok;Yeon, Kyu-Jeong;Kwon, Soon-Ji
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.348.1-348.1
    • /
    • 2002
  • We synthesized various catechol ether type derivatives substituted by the hydrazine moiety and evaluated for their ability to inhibit PDE Ⅳ (Phosphodiesterase Ⅳ). These new compounds were synthesized from 4-methoxy-3-hydroxy benzaldehyde through 5 or 7 steps. Some of them have similar or more potent inhibitory activity against PDE Ⅳ than known PDE Ⅳ inhibitor. Ariflo (SB 207499). Structure activity relationship (SAR) and biological studies of described compounds will be discussed in detail. (omitted)

  • PDF

Restoration of Cavernous Veno-Occlusive Function through Chronic Administration of a Jun-Amino Terminal Kinase Inhibitor and a LIM-Kinase 2 Inhibitor by Suppressing Cavernous Apoptosis and Fibrosis in a Rat Model of Cavernous Nerve Injury: A Comparison with a Phosphodiesterase Type 5 Inhibitor

  • Min Chul Cho;Junghoon Lee;Juhyun Park;Soo Woong Kim
    • The World Journal of Men's Health
    • /
    • v.39 no.3
    • /
    • pp.541-549
    • /
    • 2021
  • Purpose: To determine if chronic administration of Jun-amino terminal kinase (JNK)-inhibitors and LIM-kinase 2 (LIMK2)-inhibitors from the immediate post-injury period in a rat model of cavernous-nerve-crush-injury could normalize cavernousveno-occlusive-function, and to compare it with phosphodiesterase type 5 (PDE5)-inhibitors. Materials and Methods: A total of 75 12-week-old male Sprague-Dawley-rats were randomized into five groups: sham-surgery (S), cavernous-nerve-crush-injury (I), cavernous-nerve-crush-injury treated with 10.0 mg/kg LIMK2-inhibitor (L) or 10.0 mg/kg JNK-inhibitor and 10.0 mg/kg LIMK2-inhibitor (J+L) or 20.0 mg/kg udenafil (P) for five-weeks. Five-weeks after surgery, dynamic-infusion-cavernosometry, histological-studies, caspase-3-activity-assay, and Western-blot were investigated. Results: Group-I had lower papaverine-response, higher maintenance-rate and higher drop-rate, compared to Group-S. Group-L, Group-J+L and Group-P showed improvement in the three dynamic-infusion-cavernosometry parameters. The papaverine-response and drop-rate in Group-J+L and Group-P recovered to sham-control level, but those in Group-L did not. Regarding apoptosis, Group-I had decreased content of α-smooth-muscle-actin, increased caspase-3 activity and increased cJun-phosphorylation. The cJun-phosphorylation improved only in Group-J+L. The α-smooth-muscle-actin content and caspase-3-activity in Group-J+L and Group-P improved, but those in Group-L were not. Regarding fibrosis, Group-I had decreased smooth muscle (SM)/collagen-ratio, increased protein-expression of fibronectin, and increased Cofilin-phosphorylation. Cofilin-phosphorylation was normalized in Group-L and Group-J+L, but not in Group-P. SM/collagen-ratio and proteinexpression of fibronectin in Group-L, Group-J+L and Group-P improved. Conclusions: Our data indicate that chronic inhibition of JNK and LIMK2 can restore cavernous-veno-occlusive-function by suppressing cavernous-apoptosis and cavernous-fibrosis, comparable to the results by PDE5-inhibitors. Chronic inhibition of JNK and LIMK2 might be a potential mechanism-specific targeted therapy for cavernous-veno-occlusive-dysfunction induced by cavernous nerve-injury.