• Title/Summary/Keyword: Phosphodiesterase-3 inhibitor

Search Result 56, Processing Time 0.026 seconds

Role of Nitric Oxide in Ischemia-evoked Release of Norepinephrine from Rat Cortex Slices (흰쥐 대뇌피질 절편에서 허혈에 의한 Norepinephrine 유리에 있어서 Nitric Oxide의 영향)

  • Eun, Young-Ah;Kim, Dong-Chan;Cho, Kyu-Park;Kim, Kee-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.673-679
    • /
    • 1997
  • It has been generally accepted that glutamate mediates the ischemic brain damage, excitotoxicity, and induces release of neurotransmitters, including norepinephrine(NE), in ischemic milieu. In the present study, the role of nitric oxide(NO) in the ischemia-induced $[^3H]norepinephrine([^3H]NE)$ release from cortex slices of the rat was examined. Ischemia, deprivation of oxygen and glucose from $Mg^{2+}-free$ artificial cerebrospinal fluid, induced significant release of $[^3H]NE$ from cortex slices. This ischemia-induced $[^3H]NE$ release was significantly attenuated by glutamatergic neurotransmission modifiers. $N^G-nitro-L-arginine$ methyl ester(L-NAME), $N^G-monomethyl-L-arginine$ (L-NMMA) or 7-nitroindazole, nitric oxide synthase inhibitors attenuated the ischemia-evoked $[^3H]NE$ release. Hemoglobin, a NO chelator, and 5, 5- dimethyl-L-pyrroline-N-oxide(DMPO), an electron spin trap, inhibited $[^3H]NE$ release dose-dependently. Ischemia-evoked $[^3H]NE$ release was inhibited by methylene blue, a soluble guanylate cyclase inhibitor, and potentiated by 8-bromo-cGMP, a cell permeable cGMP analog, zaprinast, a cGMP phosphodiesterase inhibitor, and S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide generator. These results suggest that the ischemia-evoked $[^3H]NE$ release is mediated by NMDA receptors, and activation of NO system is involved.

  • PDF

Regulation of thyroxine release in the thyroid by protein kinase C (갑상선에서 protein kinase C에 의한 thyroxine 유리조절)

  • Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.6
    • /
    • pp.1073-1080
    • /
    • 1999
  • Previous studies suggested that the inhibition of thyroxine ($T_4$) release by ${\alpha}_1$-adrenoceptor and muscarinic receptor stimulation results in activated protein kinase C (PKC) from mouse and guinea pig thyroids. In the present study, the effect of carbachol, methoxamine, phorbol myristate acetate (PMA), and R59022 on the release of $T_4$ from the mouse, rat, and guinea pig thyroids was compared to clarify the role of PKC in the regulation of the release of $T_4$. The thyroids were incubated in the medium containing the test agents, samples of the medium were assayed for $T_4$ by EIA kits. Forskolin, an adenylate cyclase activator, chlorophenylthio-cAMP sodium, a membrane permeable analog of cAMP, and isobutyl-methylxanthine, a phosphodiesterase inhibitor, like TSH (thyroid stimulating hormone), enhaced the release of $T_4$ from the mouse, rat, and guinea pig thyroids. Methoxamine, an ${\alpha}_1$-adrenoceptor agonist, inhibited the TSH-stimulated release of $T_4$ in mouse, but not rat and guinea pig thyroids. In contrast, carbachol, a muscarinic receptor agonist, inhibited the release of $T_4$ in guinea pig, but not mouse and rat thyroids. These inhibition were reversed by prazosin, an ${\alpha}_1$-adrenoceptor antagonist or atropine, a muscarinic antagonist or $M_1$- and $M_3$-muscarinic antagonists, in mouse or guinea pig thyroids. In addition, staurosporine, a PKC inhibitor, reversed methoxamine or carbachol inhibition of TSH stimulation. Furthermore, PMA, a PKC activator, and R59022, a diacylglycerol (DAG) kinase inhibitor, inhibited the TSH-stimulated release of $T_4$ in mouse, rat, and guinea pig thyroids. These inhibition were blocked by staurosporine. These findings suggest that the activation of receptor or DAG inhibits TSH-stimulated $T_4$ release through a PKC-dependent mechanism in thyroid gland.

  • PDF

The Antiallodynic Effects of Intrathecal Zaprinast in Rats with Chronic Constriction Injury of the Sciatic Nerve (좌골신경 만성협착손상 흰쥐에서 척수강 내로 투여된 Zaprinast의 항이질통 효과)

  • Lee, Jae Do;Jun, In Gu;Choi, Yun Sik;Im, So Hyun;Park, Jong Yeon
    • The Korean Journal of Pain
    • /
    • v.22 no.1
    • /
    • pp.16-20
    • /
    • 2009
  • Background: Zaprinast is an inhibitor of phosphodiesterase 5, 6 and 9. Phosphodiesterase inhibitors could produce anti-nociceptive effects by promoting the accumulation of cGMP. We hypothesized that intrathecal zaprinast could attenuate the allodynia induced by chronic constriction injury of the sciatic nerve in rat. Methods: Sprague-Dawley rats were prepared with four loose ligations of the left sciatic nerve just proximal to the trifurcation into the sural, peroneal and tibial nerve branches. Tactile allodynia was measured by applying von Frey filaments to the lesioned hindpaw. The thresholds for the withdrawal responses were assessed. Zaprinast ($3-100{\mu}g$) was administered intrathecally by the direct lumbar puncture method to obtain the dose-response curve and the 50% effective dose ($ED_{50}$). Measurements were taken before and 15, 30, 45, 60, 90, 120, and 180 min after the intrathecal doses of zaprinast. The side effects were also observed. Results: Intrathecal zaprinast resulted in a dose-dependent antiallodynic effect. The maximal effects occurred within 15-30 min and then they gradually decreased down to the baseline level over time in all the groups. There was a dose dependent increase in the magnitude and duration of the effect. The $ED_{50}$ value was $17.4{\mu}g$ (95% confidence intervals; $14.7-20.5{\mu}g$). No severe motor weakness or sedation was observed in any of the rats. Conclusions: Intrathecally administered zaprinast produced a dose-dependent antiallodynic effect in the chronic constriction injury neuropathic pain model. These findings suggest that spinal phosphodiesterase 5, 6 and 9 may play an important role in the modulation of neuropathic pain.

Studies on the Mechanical Activities of Rabbit Myometrium V. Effects of Acetylcholine, Oxytocin and Prostagla, din F2α on Cyclic Nucleotide Levels of Rabbit Whole Uterus (가토 척출 자궁근의 운동성에 관한 연구 V. Acetylcholine, PGF2α 및 Oxytocin의 자궁 수축기전에 관한 연구)

  • Lee, Chang-Eop;Kwun, Jong-Kuk;Lee, Joong-Sup;Yang, Il-Suk;Lee, Mun-Han
    • Korean Journal of Veterinary Research
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 1982
  • The effect of acetylcholine, oxytocin and prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$) on cyclic nucleotide levels in estrogen-primed rabbit whole uterus were studied in the presence and absence of 1-methyl-3-isobutyl xanthine (MIX), a phosphodiestrase inhibitor, and indomethacin, a prostagandin inhibitor. In the absence of MIX, acetylcholine increased guanosine 3', 5'-cyclic monophosphate (cGMP), but had no effect on adenosine 3', 5'-cyclic monophosphate (cAMP) levels. In contrast, oxytocin had no influence on cGMP, but decreased cAMP levels. $PGF_{2{\alpha}}$ increased cGMP and decreased cAMP levels. MIX increased both cAMP and cGMP levels. Oxytocin and $PGF_{2{\alpha}}$ further increased cGMP levels, indicating activation of guanylate cyclase activity. The ratio of cAMP/cGMP was decreased by uterine stinulants both in presence and absence of MIX. Indomethacin elevated cAMP and cGMP revels. The effects of uterine stimulants in the presence of indomethacin on cyclic nucleotide levels were varied from tissue to tisse. In general, oxytocin decreased cGMP and $PGF_{2{\alpha}}$ increased cAMP/cGMP levels, but the effects were statisically nonsignicficant. The cAMP/cGMP ratio was increased by uterine stimulant in the presence of indomethacin. In conclusion, uterine stimulants eased cAMP/cGMP ratio which indicates that the uterine stimulants have opposing effects on adenylate cyclase and guanylate cyclase activities. The endometrium plays a role in the regulation of cyclic nucleotide levels and uterine contraction by means of PG synthesis. Indomethacin has an unknown activities besides both of PG synthetase and phosphodiesterase inhibitions.

  • PDF

Sildenafil Ameliorates Advanced Glycation End Products-Induced Mitochondrial Dysfunction in HT-22 Hippocampal Neuronal Cells

  • Sung, Soon Ki;Woo, Jae Suk;Kim, Young Ha;Son, Dong Wuk;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.3
    • /
    • pp.259-268
    • /
    • 2016
  • Objective : Accumulation of advanced glycation end-products (AGE) and mitochondrial glycation is importantly implicated in the pathological changes of the brain associated with diabetic complications, Alzheimer disease, and aging. The present study was undertaken to determine whether sildenafil, a type 5 phosphodiesterase type (PDE-5) inhibitor, has beneficial effect on neuronal cells challenged with AGE-induced oxidative stress to preserve their mitochondrial functional integrity. Methods : HT-22 hippocampal neuronal cells were exposed to AGE and changes in the mitochondrial functional parameters were determined. Pretreatment of cells with sildenafil effectively ameliorated these AGE-induced deterioration of mitochondrial functional integrity. Results : AGE-treated cells lost their mitochondrial functional integrity which was estimated by their MTT reduction ability and intracellular ATP concentration. These cells exhibited stimulated generation of reactive oxygen species (ROS), disruption of mitochondrial membrane potential, induction of mitochondrial permeability transition, and release of the cytochrome C, activation of the caspase-3 accompanied by apoptosis. Western blot analyses and qRT-PCR demonstrated that sildenafil increased the expression level of the heme oxygenase-1 (HO-1). CoPP and bilirubin, an inducer of HO-1 and a metabolic product of HO-1, respectively, provided a similar protective effects. On the contrary, the HO-1 inhibitor ZnPP IX blocked the effect of sildenafil. Transfection with HO-1 siRNA significantly reduced the protective effect of sildenafil on the loss of MTT reduction ability and MPT induction in AGE-treated cells. Conclusion : Taken together, our results suggested that sildenafil provides beneficial effect to protect the HT-22 hippocampal neuronal cells against AGE-induced deterioration of mitochondrial integrity, and upregulation of HO-1 is involved in the underlying mechanism.

cAMP induction by ouabain promotes endothelin-1 secretion via MAPK/ERK signaling in beating rabbit atria

  • Peng, Li-qun;Li, Ping;Zhang, Qiu-li;Hong, Lan;Liu, Li-ping;Cui, Xun;Cui, Bai-ri
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • Adenosine 3',5'-cyclic monophosphate (cAMP) participates in the regulation of numerous cellular functions, including the $Na^+-K^+$-ATPase (sodium pump). Ouabain, used in the treatment of several heart diseases, is known to increase cAMP levels but its effects on the atrium are not understood. The aim of the present study was to examine the effect of ouabain on the regulation of atrial cAMP production and its roles in atrial endothelin-1 (ET-1) secretion in isolated perfused beating rabbit atria. Our results showed that ouabain ($3.0{\mu}mol/L$) significantly increased atrial dynamics and cAMP levels during recovery period. The ouabain-increased atrial dynamics was blocked by KB-R7943 ($3.0{\mu}mol/L$), an inhibitor for reverse mode of $Na^+-Ca^{2+}$ exchangers (NCX), but did not by L-type $Ca^{2+}$ channel blocker nifedipine ($1.0{\mu}mol/L$) or protein kinase A (PKA) selective inhibitor H-89 ($3.0{\mu}mol/L$). Ouabain also enhanced atrial intracellular cAMP production in response to forskolin and theophyline ($100.0{\mu}mol/L$), an inhibitor of phosphodiesterase, potentiated the ouabain-induced increase in cAMP. Ouabain and 8-Bromo-cAMP ($0.5{\mu}mol/L$) markedly increased atrial ET-1 secretion, which was blocked by H-89 and by PD98059 ($30{\mu}mol/L$), an inhibitor of extracellular-signal-regulated kinase (ERK) without changing ouabain-induced atrial dynamics. Our results demonstrated that ouabain increases atrial cAMP levels and promotes atrial ET-1 secretion via the mitogen-activated protein kinase (MAPK)/ERK signaling pathway. These findings may explain the development of cardiac hypertrophy in response to digitalis-like compounds.

Protective Effects of Ginkgolide B on Reperfusion of the Isolated Perfused Guinea Pig Heart (Ginkgolide B의 Guinea Pig 적출 심장에 대한 허혈 유발후 Reperfusion시의 보호 작용에 관한 연구)

  • Kwon, Kwang-il;Lee, Young-sin;Lee, Jae-heung
    • Korean Journal of Clinical Pharmacy
    • /
    • v.3 no.2
    • /
    • pp.147-155
    • /
    • 1993
  • The cardiac effects of PAF antagonist Ginkgolide B(BN 52051) have been investigated on the isolated perfused guinea pig hearts maintained at the constant hydrostatic perfusion pressure of 80 cm water. PDE(Phosphodiesterase) inhibitor KR-30289 was used as a positive control to see the positive inotropic effects on the perfused hearts. In this expriments, Ginkgolide $B(10^{-5}-SM)$ showed negative inotropic effects by decreasing of LVP, LVDP, LV dp/dt, HR and RPP(Rate Pressure Product). Ginkgolide B also decreased the number of extrasystole by $51.9\%(from\;23.75\pm9.22/min\;to\;11.43\pm435/min)$ induced by global ischemia and reperfusion. The rate, [-dp/dt]/[+dp/dt] increased in preischemia but decreased in postischemia. 1n the separated study the injection of 1ml of Ginkgolide B$(10^{-4M})$ on the isolated heart, increased coronary flow(CF) by $11.8\%(from\;7.5\pm7.65ml/min\;to\;8.5\pm0.29ml/min)$ and decreased the number of extrasystole by $47.6\%(from\;21\pm5.92/min\;to\;11\pm5.27/min)$. In conclusion, Ginkgolide B showed antiarrhythmic and protective effects by decreasing the number of extrasystole and by increasing the coronary flow, respectively.

  • PDF

Regulation of Cumulus Expansion of Porcine Cumulus-Oocyte Complexes in vitro: Involvement of cAMP and Calcium (한국인에 대한 지문과 장문의 정량적 분석)

  • 황긍연
    • The Korean Journal of Zoology
    • /
    • v.30 no.2
    • /
    • pp.117-139
    • /
    • 1987
  • The present experiments were carried out to investigate the mode of cAMP regulation of cumulus expansion in pig. Intracellular level of cAMP in the cumulus cells was modulated by culturing porcine cumulus oocyte complexes (COC's) with forskolin, an adenylate cyclase stimulator and 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. The role of calcium in the hormone induced cumulus expansion process was also studied. Forskolin in the medium stimulated cumulus expansion from the concentration of 0.01 $\mu$M and induced full expansion at l-10 $\mu$M In contrast, IBMX in the medium (20-180 $\mu$M) failed to induce the expansion. Verapamil, a calcium ion transport blocker, suppressed follicle stimulating hormone(FSH)-induced cumulus expansion in a dose dependent fashion (0.002-0. 2 mM) when the COC's were exposed to the drugs during culture period (32 hr). But verapamil did not interfere with the triggering action of FSH during early four hours of culture period. The data presented here showed that adenylate cyclase in the porcine cumulus cells may play a key role in the regulation of the intracellular cAMP level and calcium ion may be involved in the later period of cumulus expansion process.

  • PDF

Role of cAMP in the Regulation of Progesterone Production and Secretion by Frog (Rana dybowskii) Follicles in vitro (북방산 개구리(Rana dybowskii)의포의 프로젝트론 생서에 대한 cAMP의 조절작용)

  • 권혁방;안연섭;김지열;윤용달
    • The Korean Journal of Zoology
    • /
    • v.31 no.3
    • /
    • pp.177-184
    • /
    • 1988
  • The pattern of progesterone production and secretion of frog(R. dybowskii) follicles was investigated in follicle culture in vitro. Involvement of cAMP in the regulation of the steroid production by the follicles was also investigated by manipulating endogeneous cAMP level with forskolin and/or 3-isoburyl- 1 - methylxanthine(IBMX). Endogeneous follicular progesterone level increased rapidly in one hour of culture by treatment of frog pituitary homogenate(FPH) and reached peak level at 2 hours or later. But the absolute amount of progesterone produced (60-300 pg/follicle) or the peak time of the honnone level was different between individual animals. Basal level of progesterone in untreated sister follicles was very low (around 10 pg/follicle) and nearly undetectable in most cases regardless of culture lime. Secretion level of progesterone by the follicles obtained by measunng the honnone in the culture media was just the reflection of the intrafollicular level. Exogeneously added forskolin, an adenylate cyclase stimulator, and/or IBMX, a phosphodiesterase inhibitor, could mimic FPH action in terms of progesterone production and secretion. Thus, it seems clear that FPH regulates progesterone production via cAMP system in the follicle cells.

  • PDF

Structure-Activity Relationships of Dimethylsphingosine (DMS) Derivatives and their Effects on Intracellular pH and $Ca^{2+}$ in the U937 Monocyte Cell Line

  • Chang, Young-Ja;Lee, Yun-Kyung;Lee, Eun-Hee;Park, Jeong-Ju;Chung, Sung-Kee;Im, Dong-Soon
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.657-665
    • /
    • 2006
  • We recently reported that dimethylsphingosine (DMS), a metabolite of sphingolipids, increased intracellular pH and $Ca^{2+}$ concentration in U937 human monocytes. In the present study, we found that dimethylphytosphingosine (DMPH) induced the above responses more robustly than DMS. However, phytosphingosine, monomethylphytosphingosine or trimethylsphingosine showed little or no activity. Synthetic C3 deoxy analogues of sphingosine did show similar activities, with the C16 analogue more so than C18. The following structure-activity relationships were observed between DMS derivatives and the intracellular pH and $Ca^{2+}$ concentrations in U937 monocytes; 1) dimethyl modification is important for the DMS-induced increase of intracellular pH and $Ca^{2+}$, 2) the addition of an OH group on C4 enhances both activities, 3) the deletion of the OH group on C3 has a negligible effect on the activities, and 4) C16 appears to be more effective than C18. We also found that W-7, a calmodulin inhibitor, blocked the DMS-induced pH increase, whereas, KN-62, ML9, and MMPX, specific inhibitors for calmodulin-dependent kinase II, myosin light chain kinase, and $Ca^{2+}$-calmodulin-dependent phosphodiesterase, respectively, did not affect DMS-induced increases of pH in the U937 monocytes.