• 제목/요약/키워드: Phleomycin resistance

검색결과 3건 처리시간 0.02초

Transformation of the Edible Basidiomycete, Pleurotus ostreatus to Phleomycin Resistance

  • Kim, Beom-Gi;Joh, Jung-Ho;Yoo, Young-Bok;Magae, Yumi
    • Mycobiology
    • /
    • 제31권1호
    • /
    • pp.42-45
    • /
    • 2003
  • For transformation of Pleurotus ostreatus, two novel vectors, pPhKM1 and pPhKM2, were constructed, using the regulatory sequences of the P. sajor-caju $\beta$-tubulin gene(TUB1) and the ble gene encoding phleomycin binding protein. pPhKM1 contains ble fused to the TUB1 promoter and the Schizophyllum commune GPD terminator. pPhKM2 contains ble fused to the promoter and terminator regions of P. sajor-caju TUB1. To confirm phleomycin-resistance activity, each vector was cotrans-formed with pTRura3-2 into the P. ostreatus homokaryotic $ura^-$ strain. The transforming DNA was stably integrated into the genomic DNA. Subsequently, phleomycin resistance was conferred on wild-type dikaryotic P. ostreatus by transformation with pPhKM1 or pPhKM2. This transformation system generated stable phleomycin-resistant transformants.

Activity of Early Gene Promoters from a Korean Chlorella Virus Isolate in Transformed Chlorella Algae

  • Jung Heoy-Kyung;Kim Gun-Do;Choi Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권6호
    • /
    • pp.952-960
    • /
    • 2006
  • As a unicellular green alga that possesses many of the metabolic pathways present in higher plants, Chlorelia offers many advantages for expression of heterologous proteins. Since strong and constitutive promoters are necessary for efficient expression in heterologous expression systems, the development of such promoters for use in the Chlorella system was the aim of this study. Proteins encoded by the early genes of algal viruses are expressed before viral replication, probably by the host transcriptional machinery, and the promoters of these genes might be useful for heterologous expression in Chlorella. In this study, putative promoter regions of DNA polymerase, ATP-dependent DNA ligase, and chitinase genes were amplified from eight Korean Chlorella virus isolates by using primer sets designed based on the sequence of the genome of PBCV-1, the prototype of the Phycodnaviridae. These putative promoter regions were found to contain several cis-acting elements for transcription factors, including the TATA, CAAT, NTBBF1, GATA, and CCAAT boxes. The amplified promoter regions were placed into Chlorella transformation vectors containing a green fluorescence protein (GFP) reporter gene and the Sh ble gene for phleomycin resistance. C. vulgaris protoplasts were transformed and then selected with phleomycin. The GFP fluorescence intensities of cells transformed with chitinase, DNA polymerase, and DNA ligase gene promoter-GFP fusion constructs were 101.5, 100.8, and 95.8%, respectively, of that of CaMV 35S-GFP-transformed Chlorella cells. These results demonstrate that these viral promoters are active in transformed Chlorella.

A Comparison of the Phenotypic and Genetic Stability of Recombinant Trichoderma spp. Generated by Protoplast- and Agrobacterium-Mediated Transformation

  • Cardoza Rosa Elena;Vizcaino Juan Antonio;Hermosa Maria Rosa;Monte Enrique;Gutierrez Santiago
    • Journal of Microbiology
    • /
    • 제44권4호
    • /
    • pp.383-395
    • /
    • 2006
  • Four different Trichoderma strains, T. harzianum CECT 2413, T. asperellum T53, T. atroviride T11 and T. longibrachiatum T52, which represent three of the four sections contained in this genus, were transformed by two different techniques: a protocol based on the isolation of protoplasts and a protocol based on Agrobacterium-mediated transformation. Both methods were set up using hygromycin B or phleomycin resistance as the selection markers. Using these techniques, we obtained phenotypically stable transformants of these four different strains. The highest transformation efficiencies were obtained with the T. longibrachiatum T52 strain: 65-70 $transformants/{\mu}g$ DNA when transformed with the plasmid pAN7-1 (hygromycin B resistance) and 280 $transformants/l0^7$ spores when the Agrobacterium-mediated transformation was performed with the plasmid pUR5750 (hygromycin B resistance). Overall, the genetic analysis of the transform ants showed that some of the strains integrated and maintained the transforming DNA in their genome throughout the entire transformation and selection process. In other cases, the integrated DNA was lost.