• 제목/요약/키워드: Phenotypic trait

검색결과 198건 처리시간 0.037초

Genome-wide association studies to identify quantitative trait loci and positional candidate genes affecting meat quality-related traits in pigs

  • Jae-Bong Lee;Ji-Hoon Lim;Hee-Bok Park
    • Journal of Animal Science and Technology
    • /
    • 제65권6호
    • /
    • pp.1194-1204
    • /
    • 2023
  • Meat quality comprises a set of key traits such as pH, meat color, water-holding capacity, tenderness and marbling. These traits are complex because they are affected by multiple genetic and environmental factors. The aim of this study was to investigate the molecular genetic basis underlying nine meat quality-related traits in a Yorkshire pig population using a genome-wide association study (GWAS) and subsequent biological pathway analysis. In total, 45,926 single nucleotide polymorphism (SNP) markers from 543 pigs were selected for the GWAS after quality control. Data were analyzed using a genome-wide efficient mixed model association (GEMMA) method. This linear mixed model-based approach identified two quantitative trait loci (QTLs) for meat color (b*) on chromosome 2 (SSC2) and one QTL for shear force on chromosome 8 (SSC8). These QTLs acted additively on the two phenotypes and explained 3.92%-4.57% of the phenotypic variance of the traits of interest. The genes encoding HAUS8 on SSC2 and an lncRNA on SSC8 were identified as positional candidate genes for these QTLs. The results of the biological pathway analysis revealed that positional candidate genes for meat color (b*) were enriched in pathways related to muscle development, muscle growth, intramuscular adipocyte differentiation, and lipid accumulation in muscle, whereas positional candidate genes for shear force were overrepresented in pathways related to cell growth, cell differentiation, and fatty acids synthesis. Further verification of these identified SNPs and genes in other independent populations could provide valuable information for understanding the variations in pork quality-related traits.

Genetic and phenotypic relationships of live body measurement traits and carcass traits in crossbred pigs of Korea

  • Do, Chang-Hee;Park, Chan-Hyuk;Wasana, Nidarshani;Choi, Jae-Gwan;Park, Su-Bong;Kim, Si-Dong;Cho, Gyu-Ho;Lee, Dong-Hee
    • 농업과학연구
    • /
    • 제41권3호
    • /
    • pp.229-236
    • /
    • 2014
  • This study presents the estimates of heritabilities of body measurement traits and carcass traits, and genetic and phenotypic correlations of those traits for crossbred pigs in Korea. Body and ultrasound (A mode: Piglog 105) measurements in 221 pigs including body weight, length, height and width, three back fat thickness at the points of 4th, 14th rib and chine bone, eye muscle area and lean meat percent were collected at the ages of 70, 145 and 180 days and then slaughtered to measure carcass weight, back fat, belly, collar butt, spare rib, picnic shoulder, hind leg, loin, tenderloin, lean meat yield and intramuscular rough fat content in loin. Genetic analysis was done using a multi-trait animal model. Heritabilties of the body measurements were ranged from 0.331 to 0.559 and three measurements of back fat thickness were also high as range varying from 0.402 to 0.475 for the ages of 145 and 180 days. However, eye muscle area was moderate (0.296) at the age of 180 days. Heritabilities of retail cut yields were also high as ranged from 0.387 to 0.474 and of IMF content in loin was 0.499. Heritabilities of the cut percent traits were ranged from 0.249 to 0.488. Important positive genetic and phenotypic correlations were noted for all carcass yield traits (0.298 to 0.875 and 0.432 to 0.922, respectively). IMF showed low negative genetic correlations with carcass yield traits, such as carcass weight, picnic shoulder, hind leg, loin, tenderloin and lean meat yield whereas low positive genetic correlations with back fat, belly, collar butt and spare rib. Loin, tenderloin and lean meat percent showed negative genetic correlations with carcass weight, back fat thickness, collar butt, spare rib and picnic shoulder percent. The four body measurements at the ages of 70, 145 and 180 days had positive genetic correlations with belly, shoulder butt, spare rib, picnic shoulder and hind leg percent, but negative genetic correlations were shown with loin and tenderloin percent except body measurements at 70 days. The results suggest that carcass yield are negatively correlated with intramuscular fat content, which is a major factor deciding pork quality and the yield of loin and tenderloin are not increased as much as increase in body size. However, the proportions of belly and collar butt are increased with the body size. In conclusion, selection strategy should be designed according to the preference on composition of carcass in each country.

Identification of Quantitative Traits Loci (QTL) Affecting Growth Traits in Pigs

  • Kim, T.H.;Choi, B.H.;Lee, H.K;Park, H.S.;Lee, H.Y.;Yoon, D.H.;Lee, J.W.;Jeong, G.J.;Cheong, I.C.;Oh, S.J.;Han, J.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권11호
    • /
    • pp.1524-1528
    • /
    • 2005
  • Molecular genetic markers were used to detect chromosomal regions which contain economically important traits such as growth, carcass, and meat quality traits in pigs. A three generation resource population was constructed from a cross between Korean native boars and Landrace sows. A total of 240 F2 animals from intercross of F1 was produced. Phenotypic data on 17 traits, birth weight, body weights at 3, 5, 12, and 30 weeks of age, teat number, carcass weight, backfat thickness, body fat, backbone number, muscle pH, meat color, drip loss, cooking loss, water holding capacity, shear force, and intramuscular fat content were collected for F2 animals. Animals including grandparents (F0), parents (F1), and offspring (F2) were genotyped for 80 microsatellite markers covering from chromosome 1 to 10. Least squares regression interval mapping was used for quantitative trait loci (QTL) identification. Significance thresholds were determined by permutation tests. A total of 10 QTL were detected at 5% chromosome-wide significance levels for growth traits on SSCs 2, 4, 5, 6, and 8.

한국꿩의 체중과 정강이 길이 및 정강이 두께에 대한 유전모수 추정에 관한 연구 (Estiniation of Genetic Parameters for Body Weight, Shank Length, and Shank Width in Korean Pheaaant)

  • 김준;양영훈
    • 한국가금학회지
    • /
    • 제24권3호
    • /
    • pp.153-160
    • /
    • 1997
  • This study was carried out to estimate the heritability and genetic correlation for body weight, shank length and shank width at various wk of age in growing Korean pheasant. All the measurements were done from one day to 20 wk of age with 4 wk interval. The heritability estimates for body weight were in the range of 0.54~0.59 for male and of 0.49~0.81 for female from 4 to 20 wk of age. The heritability estimates of male and female were in the range of 0.38~0. 82 and 0.41~0.67 for shank length, and of 0.48~0.88 and 0.49~0.71 for shank width, respectively. Genetic and phenotypic correlation coefficients between the measurements at different ages in each trait of body weight, shank length and shank width were medium to high positive values. Because the estimates of heritabilities and genetic correlations were high, the genetic gain for body weight is expected by either a direct selection or an early selection based on the record of early growing stage.

  • PDF

QTL Mapping of Genes Related with Grain Chemical Properties Based on Molecular Map of Rice

  • Kang, Hyeon-Jung;Cho, Yong-Gu;Lee, Young-Tae;Kim, Young-Doo;Eun, Moo-Young;Shim, Jae-Uk
    • 한국작물학회지
    • /
    • 제43권4호
    • /
    • pp.199-204
    • /
    • 1998
  • This study was conducted to investigate the chromosomal locations and effects of quantitative trait loci (QTL) associated with chemical properties of rice (Oryza sativa L.). One hundred sixty four recombinant inbred lines (MGRILs) of $F_{11}$ were derived from the cross between Milyang 23, Tongil type, and Gihobyeo, japonica type. They were evaluated for 7 traits of chemical property in rice. Transgressive segregation was observed for all traits examined. Eight significant QTLs were detected (LOD$\geq$2.0) for five traits, including two QTLs for amylose content, two QTLs for potassium content, one QTL for ratio of magnesium to potassium, one QTL for fat content and two QTLs for ash content. Phenotypic variation explained by each QTL ranged from 7.2% to 14.4%. However, no significant QTL was detected for magnesium and protein contents. In amylose content and ash content M alleles originated from Milyang 23 were responsible for increasing these traits and J alleles originated from Gihobyeo also responsible for increasing these traits. Pleiotropic effects of single QTLs on different traits are observed.

  • PDF

Gene Set Analyses of Genome-Wide Association Studies on 49 Quantitative Traits Measured in a Single Genetic Epidemiology Dataset

  • Kim, Jihye;Kwon, Ji-Sun;Kim, Sangsoo
    • Genomics & Informatics
    • /
    • 제11권3호
    • /
    • pp.135-141
    • /
    • 2013
  • Gene set analysis is a powerful tool for interpreting a genome-wide association study result and is gaining popularity these days. Comparison of the gene sets obtained for a variety of traits measured from a single genetic epidemiology dataset may give insights into the biological mechanisms underlying these traits. Based on the previously published single nucleotide polymorphism (SNP) genotype data on 8,842 individuals enrolled in the Korea Association Resource project, we performed a series of systematic genome-wide association analyses for 49 quantitative traits of basic epidemiological, anthropometric, or blood chemistry parameters. Each analysis result was subjected to subsequent gene set analyses based on Gene Ontology (GO) terms using gene set analysis software, GSA-SNP, identifying a set of GO terms significantly associated to each trait ($p_{corr}$ < 0.05). Pairwise comparison of the traits in terms of the semantic similarity in their GO sets revealed surprising cases where phenotypically uncorrelated traits showed high similarity in terms of biological pathways. For example, the pH level was related to 7 other traits that showed low phenotypic correlations with it. A literature survey implies that these traits may be regulated partly by common pathways that involve neuronal or nerve systems.

Genetic Studies on Production Efficiency Traits in Hariana Cattle

  • Dhaka, S.S.;Chaudhary, S.R.;Pander, B.L.;Yadav, A.S.;Singh, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권4호
    • /
    • pp.466-469
    • /
    • 2002
  • The data on 512 Hariana cows, progeny of 20 sires calved during period from 1974 to 1993 maintained at Government Livestock Farm, Hisar were considered for the estimation of genetic parameters. The means for first lactation milk yield (FLY), wet average (WA), first lactation peak yield (FPY), first lactation milk yield per day of first calving interval (MCI) and first lactation milk yield per day of age at second calving (MSC) were 1,141.58 kg, 4.19 kg/day, 6.24 kg/day, 2.38 kg/day and 0.601 kg/day, respectively. The effect of period of calving was significant (p<0.05) on WA, FPY and MCI while the effect of season of calving was significant only on WA. Monsoon calvers excelled in performance for all the production efficiency traits. The effect of age at first calving (linear) was significant on all the traits except on MCI. Estimates of heritabilty for all the traits were moderate and ranged from 0.255 to 0.333 except for WA (0.161). All the genetic and phenotypic correlations among different production efficiency traits were high and positive. It may be inferred that selection on the basis of peak yield will be more effective as the trait is expressed early in life and had reasonably moderate estimate of heritability.

Evaluation of a Fine-mapping Method Exploiting Linkage Disequilibrium in Livestock Populations: Simulation Study

  • Kim, JongJoo;Farnir, Frederic
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권12호
    • /
    • pp.1702-1705
    • /
    • 2006
  • A simulation study was conducted to evaluate a fine-mapping method exploiting population-wide linkage disequilibrium. Data were simulated according to the pedigree structure based on a large paternal half-sib family population with a total of 1,034 or 2,068 progeny. Twenty autosomes of 100 cM were generated with 5 cM or 1 cM marker intervals for all founder individuals in the pedigree, and marker alleles and a number of quantitative trait loci (QTL) explaining a total of 70% phenotypic variance were generated and randomly assigned across the whole chromosomes, assuming linkage equilibrium between the markers. The founder chromosomes were then descended through the pedigree to the current offspring generation, including recombinants that were generated by recombination between adjacent markers. Power to detect QTL was high for the QTL with at least moderate size, which was more pronounced with larger sample size and denser marker map. However, sample size contributed much more significantly to power to detect QTL than map density to the precise estimate of QTL position. No QTL was detected on the test chromosomes in which QTL was not assigned, which did not allow detection of false positive QTL. For the multiple QTL that were closely located, the estimates of the QTL positions were biased, except when the QTL were located on the right marker positions. Our fine mapping simulation results indicate that construction of dense maps and large sample size is needed to increase power to detect QTL and mapping precision for QTL position.

Environmental Change Uncovers Differences in Polygenic Effect of Chromosomes from a Natural Population of Drosophila melanogaster

  • Jeung, Min-Gull;Thompson, James-N.Jr;Lee, Chung-Choo
    • Animal cells and systems
    • /
    • 제1권4호
    • /
    • pp.609-617
    • /
    • 1997
  • Polygenic variation of sternopleural bristle number was investigated at the whole chromosome level in a natural population of Drosophila melanogasfer. Fifty pairs of second and third chromosomes were analyzed at $25^\circ{C}$. Since environmental factors such as temperature influence polygenic expression of quantitative traits, whole chromosomal effects of 28 pairs from the larger original sample were measured under cycling temperature, a $10-30\circ{C}$ cycle in 24 hours, to reveal any polygenic alleles whose effects might be masked under the constant temperature. While third chromosomes typically showed a larger contribution to polygenic variation in both environments, second chromosomes showed greater sensitivity to environmental changes. Cluster analyses of second and third chromosomes produced a limited number of clusters. Such a small number of cluster's implies that there may be a small number of genes, or quantitative trait loci (QTLs), having large effects on phenotypic variation. The genetic structure assessed under constant temperature, however, did not show any correlation with the structure under cycling temperature. The discrepancy could be caused by independent response of each polygenic allele to temperature changes. Thus, polygenic structure in natural populations should be thought of as a temporally changing profile of interactions between gene and ever-changing environment.

  • PDF

Prospects of Application of Linkage Disequilibrium Mapping for Crop Improvement in Wild Silkworm (Antheraea mylitta Drury)

  • Vijayan, Kunjupillai;Singh, Ravindra Nath;Saratchandra, Beera
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제20권2호
    • /
    • pp.37-43
    • /
    • 2010
  • The wild silkworm, Antheraea mylitta Drury (Lepidoptera: Saturniidae) is a polyphagous silk producing insect that feeds on Terminalia arjuna, T. tomentosa and Shorea robusta and is distributed in the forest belts in different states of India. Phenotypically distinct populations of the A. mylitta are called "eco-race" or "ecotypes". Genetic improvement of this wild silkworm has not progressed much due to lack of adequate information on the factors that control the expression of most of the economically important traits. Considering the amazing technological advances taking place in molecular biology, it is envisaged that it is now possible to take greater control on these intractable traits if a combination of genetic, molecular and bioinformatics tools are used. Linkage disequilibrium (LD) mapping is one such approach that has extensively been used in both animal and plant system to identify quantitative trait loci (QTLs) for a number of economically important traits. LD mapping has a number of advantages over conventional biparental linkage mapping. Therefore, LD mapping is considered more efficient for gene discovery to meet the challenge of connecting sequence diversity with heritable phenotypic differences. However, care must be taken to avoid detection of spurious associations which may occur due to population structure and variety interrelationships. In this review, we discuss how LD mapping is suitable for the dissection of complex traits in wild silkworms (Antheraea mylitta).