• 제목/요약/키워드: Phenolic wastewater

검색결과 24건 처리시간 0.025초

폴리설펀 한외여과막공정에서 오존의 영향 (Effect of Ozonation on Cross-flow Filtration of Polysulfone Ultrafiltration Membrane)

  • 박영규
    • 멤브레인
    • /
    • 제11권4호
    • /
    • pp.179-189
    • /
    • 2001
  • 폴리설폰 한외여과막 분리막공정을 이용하여 투과유속 상에서의 오존의 효과를 고찰하였다. 처음에는 조제한 페놀용액을 이용해 오존의 농도 10-45 mg/l·min을 가한 후에 분리막내에 막오염 제거를 목적으로 시도하였으며 이후에는 오존과 분리막이 혼합된 연속공정에서 폐수처리를 위해 오존에 의한 통일효과를 고찰하기 위해 시도하였다. 전처리 방법으로는 펜톤 산화법을 이용하여 화학응집을 시도하였고 그 결과 폐수내 용존유기물 제거에 효과가 있는 것으로 나타났다. 실험결과 오존을 이용하게 되면 투과유속이 10% 이상 증가한다는 사실이 조제수와 폐수에 공히 같게 나타났으며 오존과 과산화수소를 이용한 고도처리에서도 투과유속증가에 더욱 효과적이었다. 특히 오존을 이용한 처리수에서는 투과압력이 12% 이상 낮아지는 효과가 나타났으며 분리막 공정에 오존처리는 막오염을 거의 제거하기보다는 막오염을 제한적으로 막는 효과를 얻었다.

  • PDF

Ferricyanide와 ferric chloride 혼합액을 사용한 Bisphenol A의 비색 정량법 개발 (Spectrophotometric Determination of Bisphenol A by Complexation with Ferricyanide and Ferric chloride solution)

  • 금은주;류희영;권기석;손호용
    • 생명과학회지
    • /
    • 제17권2호통권82호
    • /
    • pp.266-271
    • /
    • 2007
  • BPA는 플라스틱 가소제 및 폴리카보네이트 플라스틱 생산의 모노머로 광범위하게 사용되어 왔으며, 년간 세계적으로 640,000톤 이상이 생산되고 있다. 내분비장애활성을 가진 BPA는 수계 및 공업용수에서 흔히 발견되며, 이의 분석은 HPLC 및 GC 등 기기분석에 의존하고 있다. 그러나 본 연구에서는 환경 및 생활용품에 잔류하는 BPA를 신속, 정확하고, 경제적으로 분석할 수 있는 분광학적 정량방법을 개발하고자 하였으며, 이를 위해 $FeCl_3{\cdot}6H_2O$$K_3Fe(CN)_6$를 사용한 비색정량법을 확립하였다. 발색반응으로 생성된 청색화합물의 ${\lambda}max$ 및 반응특이성을 조사하였으며, 최적반응조건(시간, 온도, pH, 농도, 부피, 반응안전성)을 검토하였다. 확립된 발색반응조건에서 BPA에 대한 검량곡선(${\lambda}_{750}$=0.61 BPA $[{\mu}M]$+0.07155, $R^{2}$=0.992)을 얻었으며, 신규 확립된 비색정량법을 이용하여 토양, 수계 및 생활용품의 BPA 분석을 시도한 결과, HPLC 분석시스템과 유사한 결과를 얻을 수 있었다. 본 BPA 및 관련물질에 대한 비색정량법은, 기기분석에 비해 빠르고, 경제적이며, 대량의 시료를 일시에 취급할 수 있어 기기분석의 보완분석으로도 우수하며, BPA 분해산물은 발색반응을 나타내지 않아, 자연계로부터 BPA 분해균주 선별 등에 매우 유용하게 이용될 수 있다.

흡착광산화 시스템을 이용한 효과적인 SSC 페수처리 (Efficient Spent Sulfidic Caustic wastewater treatment using Adsorption Photocatalysis System)

  • 김종규;이민희;정용욱;주진철
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.520-520
    • /
    • 2016
  • 석유 화학공장에서 발생하는 spent sulfidic caustic (SSC) 폐수는 액화석유가스(LPG)나 천연가스(NG)의 정제과정에서 발생되는 것으로 고농도의 sulfide와 cresylic, phenolic 그리고 mercaptan 등이 포함된 독성과 냄새를 유발하는 물질이다. 이러한 물질들은 LPG나 NG의 정제과정에서 높은 산도를 가진 휘발성 황화합 물질들을 제거하기 위해 사용된 NaOH가 $H_2S$와 반응하여 발생하는 것이다. 진한 갈색 또는 검은색을 띄는 SSC 폐수는 12 이상의 높은 pH를 가지고 있으며 5~12 wt%의 높은 염분도를 가지고 있다. 또한 강한 부식성과 독성을 가진 황화합물의 농도가 1~4 wt%이며, 방향족 탄화수소 물질 (i.e. methanethiol, benzene, tolune and phenol)들도 다량 함유되어 있다. 따라서 이러한 유해 물질들은 기존의 하수처리 공정으로 방류하기 전에 완벽하게 처리해야만 하수처리 공정의 오염 부하량을 줄일 수 있다. 습식산화공정은 SSC 폐수를 처리하기 위해 흔히 사용되고 있는 물리-화학적 처리 공정이지만 고비용, 고에너지가 필요하며, 고온 및 고압에서만 작동되어 안전상의 문제점을 갖고 있다. 또한 습식산화공정을 거친 폐수는 배출허용기준을 만족하기 위해 생물학적 2차 처리가 반드시 필요하다. 철-과산화수소를 이용하는 펜톤산화 공정, 그리고 sulfide를 sulfate로 전환시키는 생물학적 처리 공정은 황화합물의 완전한 무기물화가 힘들며, 현장 적용 시 기술적 경제적 부담이 크다. 이러한 단점을 극복하고, SSC 폐수를 효과적으로 처리하기 위해 본 연구는, 높은 흡착력과 광산화력을 가진 흡착광산화 반응 시스템(Adsorption Photocatalysis System, APS)을 개발하였다. APS는 SSC 폐수를 시스템 내부로 유입하여 수중의 오염물질을 흡착광산화제로 구성된 반응구조체가 흡착하고, 흡착된 오염물질을 UV에너지와 이산화티타늄 광촉매의 광화학반응에 의해 최종적으로 무해한 물질로 환원시키는 폐수처리시스템이다. APS의 반응구조체는 태양에너지 및 인공에너지원에 의해 활용 가능하며, 난분해성 유기화합물질을 물과 이산화탄소로 분해할 수 있는 친환경적이고 경제적인 소재로서 널리 쓰이고 있는 이산화티타늄 광촉매와 화력발전소의 높은 소성온도에 의해 연소된 후 발생되는 bottom ash를 이산화티타늄의 지지체로 사용하여 높은 흡착력과 광촉매 산화력을 가진 복합물이다. 개발된 APS에 의해 SSC 폐수를 처리한 결과, COD 86.1%, 탁도 98.4%, sulfide 99.9%의 높은 처리효율을 보여주고 있다. 따라서 본 연구를 통해 개발된 APS는 강한 부식성과 독성 그리고 높은 농도를 가지고 있는 SSC 폐수를 효과적으로 처리할 수 있다.

  • PDF

페놀계 고농도 유기성 폐수의 생물학적 고도처리 운전인자 (Operation Parameters on Biological Advanced Treatment of Phenolic High-Strength Wastewater)

  • 홍성동;박철휘
    • 대한환경공학회지
    • /
    • 제22권4호
    • /
    • pp.797-806
    • /
    • 2000
  • 본 연구는 탄소원으로서 페놀과 공동기질로서 글루코스를 합유한 인공합성폐수를 만들어 실험실 규모의 UASB(Upflow Anaerobic Sludge Blanket) - PBR(Packed Bed Reactor) 공정을 운전하면서 페놀의 유일한 탄소원으로서의 이용특성과 공동기질로서 글루코스를 주입한 경우의 이용특성, 미생물의 활성도 및 질소의 동시제거 가능성에 대한 연구를 수행하였다. 실험결과 페놀올 유일한 탄소원으로 주입한 경우 페놀유입농도 600 mg/L에서도 페놀제거율 99% 이상, SCOD 2100 mg/L 농도에서 제거율 93% 이상을 보였다. 조내 미생물의 량은(VSS) 약 20 g이었고 이때 미생물의 활성도는 $0.112g\;phenol/g\;VSS{\cdot}d$이었고 SCOD 제거율은 $0.351g\;SCOD/g\;VSS{\cdot}d$이며 가스발생율은 $0.115L/g\;VSS{\cdot}d$, 메탄가스의 함유율은 70%로 나타났다. 공동기질로 페놀파 글루코스를 주입한 경우 페놀유입농도 760 mg/L하에서 페놀제거율 98% 이상, SCOD 4300 mg/L 농도에서 제거율 90% 이상을 보였다. 조내 미생물의 량은(VSS) 약 20 g이었고 이때 미생물의 활성도는 $0.135g\;phenol/g\;VSS{\cdot}d$이었고 SCOD 제거율은 $0.696g\;SCOD/g\;VSS{\cdot}d$이며 가스발생율은 $0.257L/g\;VSS{\cdot}d$. 메탄가스의 함유율은 70%로 나타났다. 회분실험결과 페놀농도 1600 mg/L 이상의 농도에서 활성의 저해를 받았으며 메탄화반응과 탈질반응이 동시에 일어나는 것으로 관찰되었다. 질산화는 수리학적 체류시간 24시간으로 하여 암모니아성 질소 $0.038kg\;NH_4-N/m^3-media{\cdot}d$ 부하조건과 유입수내 페놀농도 10~12 mg/L, SCOD 200~500 mg/L 조건하에서 저해를 받지 않고 90% 이상의 질산화율을 보였고 페놀의 제거효율은 98% 이상을 보였다.

  • PDF