DOI QR코드

DOI QR Code

Spectrophotometric Determination of Bisphenol A by Complexation with Ferricyanide and Ferric chloride solution

Ferricyanide와 ferric chloride 혼합액을 사용한 Bisphenol A의 비색 정량법 개발

  • Kum, Eun-Joo (Dept. of Food and Nutrition, Andong National University) ;
  • Ryu, Hee-Young (Dept. of Food and Nutrition, Andong National University) ;
  • Kwon, Gi-Seok (The School of Bioresource Science, Andong National University) ;
  • Sohn, Ho-Yong (Dept. of Food and Nutrition, Andong National University)
  • 금은주 (안동대학교 식품영양학과) ;
  • 류희영 (안동대학교 식품영양학과) ;
  • 권기석 (안동대학교 생명자원과학부) ;
  • 손호용 (안동대학교 식품영양학과)
  • Published : 2007.02.28

Abstract

Bisphenol A (BPA) has been widely used as a monomer for production of epoxy resins and polycarbonate plastics. The annual production of BPA exceeds 640,000 metric tons in worldwide. BPA, a suspected phenolic endocrine disrupter, is moderately soluble and frequently detected in industrial wastewater. To date, HPLC and GC has been used for BPA analysis. However, HPLC and GC-analysis need high operation lost, experts, and an elaborate pre-treatment of samples, and is difficult to apply on-time and mass analysis. Therefore, simple, mass and rapid detection of BPA in environments is necessary. In the present study, spectrophotometric method of BPA quantification was developed. Based on blue-color product formation with BPA and ferric chloride/ferricyanide under the optimized conditions, the standard curve was acquired $({\lambda}_{750}=0.061\;BPA\;[{\mu}M]+0.07155,\;R^2=0.992)$. Using an established method, the BPA contents in the soil extract, and different water samples and living products, including disposable syringe, cup and plastic tube, were analyzed. The results suggested that the method is useful for BPA determination from different massive samples. Since the BPA metabolites, nontoxic 4-hydroxyacetophenone or 4-hydroxybenzaldehyde, did not form blue-color product, this method is also useful to screen a microorganism for BPA bioremediation.

BPA는 플라스틱 가소제 및 폴리카보네이트 플라스틱 생산의 모노머로 광범위하게 사용되어 왔으며, 년간 세계적으로 640,000톤 이상이 생산되고 있다. 내분비장애활성을 가진 BPA는 수계 및 공업용수에서 흔히 발견되며, 이의 분석은 HPLC 및 GC 등 기기분석에 의존하고 있다. 그러나 본 연구에서는 환경 및 생활용품에 잔류하는 BPA를 신속, 정확하고, 경제적으로 분석할 수 있는 분광학적 정량방법을 개발하고자 하였으며, 이를 위해 $FeCl_3{\cdot}6H_2O$$K_3Fe(CN)_6$를 사용한 비색정량법을 확립하였다. 발색반응으로 생성된 청색화합물의 ${\lambda}max$ 및 반응특이성을 조사하였으며, 최적반응조건(시간, 온도, pH, 농도, 부피, 반응안전성)을 검토하였다. 확립된 발색반응조건에서 BPA에 대한 검량곡선(${\lambda}_{750}$=0.61 BPA $[{\mu}M]$+0.07155, $R^{2}$=0.992)을 얻었으며, 신규 확립된 비색정량법을 이용하여 토양, 수계 및 생활용품의 BPA 분석을 시도한 결과, HPLC 분석시스템과 유사한 결과를 얻을 수 있었다. 본 BPA 및 관련물질에 대한 비색정량법은, 기기분석에 비해 빠르고, 경제적이며, 대량의 시료를 일시에 취급할 수 있어 기기분석의 보완분석으로도 우수하며, BPA 분해산물은 발색반응을 나타내지 않아, 자연계로부터 BPA 분해균주 선별 등에 매우 유용하게 이용될 수 있다.

Keywords

References

  1. Barsoom, B. N., A. M. E. Abdelsamad and N. M. Adib. 2006. Indirect spectrophotometric determination of arbutin, whitening agent through oxidation by periodate and complexation with ferric chloride. Spectrochimica Acta Part A 64, 844-852 https://doi.org/10.1016/j.saa.2005.08.013
  2. Braunrath, R., D. Podlipna, S. Padlesak and M. Cichna-Markl.. 2005. Determination of BP A in canned foods by immuno affinity chromatography, HPLC, and fluorescence detection. J. Agric. Food Chem. 16, 8911-8917
  3. Dawson, R. M. C., D. C. Elliott, W. H. Elliott and K. M. Jones. 1986. Data for biochemical research. Oxford Science Publication, New York, pp. 484-485
  4. Fernandez, M. D., E. Cagigal, M. M. Vega, A. Urzelai, M. Babin, J. Pro and J. V. Tarazona. 2005. Ecological risk assessment of contaminated soils through direct toxicity assessment. Ecotoxicol. Environ. Saf. 62, 174-184 https://doi.org/10.1016/j.ecoenv.2004.11.013
  5. Ike, M., M. Y. Chen, C. S. Jin and M. Fujita. 2002. Acute toxicity, mutagenicity, and estrogenicity of biodegradation products of bisphenol-A. Environ. Toxicol. 17, 457-461 https://doi.org/10.1002/tox.10079
  6. Kang, J. H., Y. Katayama and F. Kondo. 2006. Biodegradation or metabolism of BPA: From microorganisms to mammals. Toxicol. 217, 81-90 https://doi.org/10.1016/j.tox.2005.10.001
  7. Knnnak, J. W. and L. Sullivan. 1996. Metabolism of bisphenol A in the rat. Toxicol. Appl. Pharmacol. 8, 175-184 https://doi.org/10.1016/S0041-008X(66)80001-7
  8. Kwon, G. S., D. G. Kim, J. B. Lee, K. S. Shin, E. J. Kum and H. Y. Sohn, 2006. Isolation of Acinetobacter calcoaceticus BP-2 capable of degradation of bisphenol A. Kor. J. Life. Sci. In press https://doi.org/10.5352/JLS.2006.16.7.1158
  9. Kwon, G. S., J. E. Kim, T. K. Kim, H. Y. Sohn. S. C. Koh. K. S. Shin and D. G. Kim. 2002. Kebsiella pneumoniae KE-l degrades endosulfan without formation of the toxic metabolite, endosulfan sulfate. FEMS. Microbiol. Lett. 215, 255-259 https://doi.org/10.1111/j.1574-6968.2002.tb11399.x
  10. Kwon, G. S., H. Y. Sohn, K. S. Shin, E. Kim and B. I. Seo. 2005. Biodegradation of the organochlorine insecticide, endosulfan, and the toxic metabolite, endosulfan sulfate, by Kelbsiella oxytoca KE-8. Appl. Microbiol. Biotechnol. 67, 845-850 https://doi.org/10.1007/s00253-004-1879-9
  11. Lee, J. B., H. Y. Sohn, E. J. Kum, K. S. Shin, M. S. Jo, J. E. Kim and G. S. Kwon. 2006. Isolation of a soil bacterium capable of biodegradation and detoxification of endosulfan and endosulfan sulfate. J. Agric. Food. Chem. 54, 8824-8828 https://doi.org/10.1021/jf061276e
  12. Lee, S. E., J. S. Kim, I. R. Kennedy, J. W. Park, G. S. Kwon, S. C. Koh and J. E. Kim. 2003. Biotransformation of an organochlorine insecticide, endosulfan, by Anabaena species. J. Agric. Food. Chem. 51, 1336-1340 https://doi.org/10.1021/jf0257289
  13. Onn, W. K., L. L. Woon and S. H. Leng. 2005. Dietary exposure assessment of infants to BPA from the use of polycarbonate baby milk bottles. Food Addit Contam. 22, 280-288 https://doi.org/10.1080/02652030500077502
  14. Patin S. A. 1982. Pollution and biological resources of the oceans, butter wurth. Scientific press, London, pp 80-109
  15. Sekine, Y., T. Yamamoto, T. Yumioka, S. Imoto, H. Kojima and T. Matsuda. 2004. Cross-talk between endocrine-disrupting chemicals and cytokine signaling through estrogen receptors. Biochem. Biophys. Res. Comm. 315, 692-698 https://doi.org/10.1016/j.bbrc.2004.01.109
  16. Sohn, H. Y., C. S. Kwon, G. S. Kwon, J. B. Lee and E. Kim. 2004. Induction of oxidative stress by endosulfan and protective effect of lipid-soluble antioxidants against endosulfan-induced oxidative damage. Toxicol. Lett. 151, 357-365 https://doi.org/10.1016/j.toxlet.2004.03.004
  17. Sohn, H. Y., H. J. Kim, E. J. Kum, J. B. Lee and G. S. Kwon, 2006. Simple and rapid evaluation system for endosulfan toxicity and selection of endosulfan detoxifying microorganism based on Lumbricus rubellus. Kor. J. Life. Sci. 16, 108-113 https://doi.org/10.5352/JLS.2006.16.1.108
  18. Sohn, H. Y., H. J. Kim, E. J. Kum, M. S. Cho, J. B. Lee, J. S. Kim and G. S. Kwon. 2006. Toxcity evaluation of endocrine disrupting chemicals using human HepG2 cell line, Lumbricus rubellus and Saccahromyces cerevisiae. Kor. J. Life. Sci. 16, 919-924 https://doi.org/10.5352/JLS.2006.16.6.919
  19. Staples, C. A., P. B. Dorn, G. M. Klecka, S. T. O'Black, D. R. Branson and L. R. Harris. 1998. A review of the environmental fate, effects and exposure of bisphenol A. Chemosphere 36, 2149-2173 https://doi.org/10.1016/S0045-6535(97)10133-3
  20. Takashi, H., Y. Akiyama, T. Naoki, N. Takanori, N. Hiruyasu, H. Kazumasa and M. Kazuhisa. 2003. Removal of hazardous phenols by microalgae under photoautotrophic conditions. J. Biosci. Bioeng. 95, 200-203 https://doi.org/10.1016/S1389-1723(03)80130-5

Cited by

  1. Paper-based microfluidic device for bisphenol A based chemical reaction and image analysis vol.10, pp.1, 2016, https://doi.org/10.1007/s13206-016-0104-0