• Title/Summary/Keyword: Phelligridin G

Search Result 3, Processing Time 0.019 seconds

Phelligridin D maintains the function of periodontal ligament cells through autophagy in glucose-induced oxidative stress

  • Kim, Ji-Eun;Kim, Tae-Gun;Lee, Young-Hee;Yi, Ho-Keun
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.5
    • /
    • pp.291-302
    • /
    • 2020
  • Purpose: The objective of this study was to investigate whether phelligridin D could reduce glucose-induced oxidative stress, attenuate the resulting inflammatory response, and restore the function of human periodontal ligament cells (HPDLCs). Methods: Primary HPDLCs were isolated from healthy human teeth and cultured. To investigate the effect of phelligridin D on glucose-induced oxidative stress, HPDLCs were treated with phelligridin D, various concentrations of glucose, and glucose oxidase. Glucose-induced oxidative stress, inflammatory molecules, osteoblast differentiation, and mineralization of the HPDLCs were measured by hydrogen peroxide (H2O2) generation, cellular viability, alkaline phosphatase (ALP) activity, alizarin red staining, and western blot analyses. Results: Glucose-induced oxidative stress led to increased production of H2O2, with negative impacts on cellular viability, ALP activity, and calcium deposition in HPDLCs. Furthermore, HPDLCs under glucose-induced oxidative stress showed induction of inflammatory molecules (intercellular adhesion molecule-1, vascular cell adhesion protein-1, tumor necrosis factor-alpha, interleukin-1-beta) and disturbances of osteogenic differentiation (bone morphogenetic protein-2, and -7, runt-related transcription factor-2), cementogenesis (cementum protein-1), and autophagy-related molecules (autophagy related 5, light chain 3 I/II, beclin-1). Phelligridin D restored all these molecules and maintained the function of HPDLCs even under glucose-induced oxidative stress. Conclusions: This study suggests that phelligridin D reduces the inflammation that results from glucose-induced oxidative stress and restores the function of HPDLCs (e.g., osteoblast differentiation) by upregulating autophagy.

진흙버섯의 항인플루엔자 활성 및 활성성분 규명

  • Hwang, Byung Soon;Yun, Bong-Sik
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.41-41
    • /
    • 2016
  • Influenza viruses are RNA viruses that belong to the Orthomyxoviridae family, and those can be divided into three types; A, B, and C, which based on the differences of the inner nucleoproteins and genomic structures. All three genera differ in their genomic structure and nucleoprotein content, they are further classified into various serotypes based on the two surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). These glycoproteins play crucial roles in viral infection and replication. Hemagglutinin mediates binding of virions to sialic acid receptors on the surfaces of target cells at the initial stage of infection. Neuraminidase cleaves the glycosidic bonds of sialic acids from the viral and cell surfaces to release the mature virions from infected cells, after viral replication. Because NA plays an important role in the viral life cycle, it is considered an attractive therapeutic target for the treatment of influenza. The methanolic extracts of Phellinus baumii and Phellinus igniarius exhibited significant activity in the neuraminidase inhibition assay. Polyphenolic compounds were isolated from the methanolic extracts. The structures of these compounds were determined to be hispidin, hypholomine B, inoscavin A, davallialactone, phelligridin D, phelligridin E, and phelligridin G by spectroscopic methods. Compounds inhibited the H1N1 neuraminidase activity in a dose-dependent manner with $IC_{50}$ values of 50.9, 22.9, 20.0, 14.2, 8.8, 8.1 and $8.0{\mu}M$, respectively. Moreover, these compounds showed anti-influenza activity in the viral cytopathic effect (CPE) reduction assay using MDCK cells. These results suggests that the polyphenols from P. baumii and P. igniarius are promising candidates for prevention and therapeutic strategies against viral infection.

  • PDF

Neuraminidase Inhibitors from the Fruiting Body of Phellinus igniarius

  • Kim, Ji-Yul;Kim, Dae-Won;Hwang, Byung Soon;Woo, E-Eum;Lee, Yoon-Ju;Jeong, Kyeong-Woon;Lee, In-Kyoung;Yun, Bong-Sik
    • Mycobiology
    • /
    • v.44 no.2
    • /
    • pp.117-120
    • /
    • 2016
  • During our ongoing investigation of neuraminidase inhibitors from medicinal fungi, we found that the fruiting bodies of Phellinus igniarius exhibited significant inhibitory activity against neuraminidase from recombinant H3N2 influenza viruses. Two active compounds were isolated from the methanolic extract of P. igniarius through solvent partitioning and Sephadex LH-20 column chromatography. The active compounds were identified as phelligridins E and G on proton nuclear magnetic resonance ($^1H$ NMR) and electrospray ionization mass measurements. These compounds inhibited neuraminidases from recombinant rvH1N1, H3N2, and H5N1 influenza viruses, with $IC_{50}$ values in the range of $0.7{\sim}8.1{\mu}M$.