• 제목/요약/키워드: Phase-shifted full-bridge

검색결과 79건 처리시간 0.213초

위상이동 제어 방식을 이용한 풀브리지 컨버터의 효율개선에 관한 연구 (A Study on Efficiency Improvement of F-B Converter with Phase-shifted control method)

  • 서재광;김용;백수현;권순도
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 F
    • /
    • pp.2685-2687
    • /
    • 1999
  • This paper is concerned on developing DC-DC converter. In contrast to resonant converter, this converter requires no external resonant elements and operates with constant switching frequency. In conventional PWM converter, two MOSFET switches of the converter are simultaneously turned on and turned off. In presented converter, to achieve Zero Voltage Switching, the two legs of the bridge are operated DC-DC converter is phase shifted. Phase shifted Full Bridge ZVS PWM Converter have an effect on the power system. Operation principle and features are illustrated by the experiment results from 50W, 250kHz with MOSFET switch.

  • PDF

ZVS 위상천이 풀브릿지 컨버터의 디지털 샘플링 기법에 따른 소신호 모델 분석 (An Analysis of ZVS Phase-Shift Full-Bridge Converter's Small Signal Model according to Digital Sampling Method)

  • 김정우;조영훈;최규하
    • 전력전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.167-174
    • /
    • 2015
  • This study describes how digital time delay deteriorates control performance in zero voltage switching (ZVS) phase-shifted full bridge (PSFB) converter. The small-signal model of the ZVS PSFB converter is derived from the buck-converter small-signal model. Digital time delay effects have been considered according to the digital sampling methods. The analysis verifies that digital time delays reduce the stability margin of the converter, and the double sampling technique exhibits better performance than the single sampling technique. Both simulation and experimental results based on 250 W ZVS PSFB confirm the validity of the analyses performed in the study.

ZVS 기법을 사용한 위상제어 PWM FB DC/DC 컨버터 (Phase-shifted PWM FB DC/DC Converter with ZVS Method)

  • 김성철;권순걸;계문호;조기연
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.392-394
    • /
    • 1996
  • This paper is to describe how to apply the Phase-shifted Full Bridge 100kHz high frequency soft-switching PWM method to 48[V], 200[A] DC/DC converter. The soft-switching is achieved from light load to full load by using phase-shifted zero voltage switching method with additional capacitors besides the MOSPET's of the right leg even though the leakage inductance of high frequency transformer is designed small. This method can reduce the switching tosses, EMI problems, and increase the effective duty. Also, this paper includes the simulation, analysis, and experiment results of the DC/DC converter unit.

  • PDF

새로운 소프트 스위칭 FB DC-DC 컨버터 (Novel soft switching FB DC-DC converter)

  • 김은수;최해영;조기연;계문호;김윤호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1997년도 전력전자학술대회 논문집
    • /
    • pp.251-255
    • /
    • 1997
  • The conventional high frequency phase-shifted full bridge dc/dc converter has a disadvantage that a circulating current flows through transformer and switching devices during the freewheeling interval. Due to this circulating current, RMS current stress, conduction losses of transformer and switching devices are increased. To alleviate this problem, this paper provides a circulating current free type high frequency soft switching phase-shifted full bridge (FB) dc/dc converter with energy recovery snubber (ERS) attached at the secondary side of transformer. The energy recovery snubber (ERS) adopted in this study is consisted of three fast recovery diode(Ds1, DS2, Ds3), two resonant capacitor (Cs1, Cs2)

  • PDF

Digital Active Load Sharing Control of Paralleled Phase-Shifted Full-Bridge Converters

  • Seong, Hyun-Wook;Cho, Je-Hyung;Moon, Gun-Woo;Youn, Myung-Joong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.129-130
    • /
    • 2010
  • For the high power demand and N+1 redundancy, this paper presents the digital load share (LS) controller design and the implementation of paralleled phase-shifted full-bridge converters (PSFBC) used in distributed power systems. By adopting the digital control strategy, separately used ICs for PSFBC and LS control functions in analog systems can be merged into a cost-effective digital controller. To compensate and stabilize both PSFBC and LS loops with the direct digital design approaches, small-signal model of the system is derived in discrete-time domain. The steady-state and dynamic load sharing performances are also investigated. Experimental results from two 1.2 kW paralleled PSFBC modules are shown to verify the proposed work.

  • PDF

The Impact of Parasitic Elements on Spurious Turn-On in Phase-Shifted Full-Bridge Converters

  • Wang, Qing
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.883-893
    • /
    • 2016
  • This paper presents a comprehensive analysis of the spurious turn-on phenomena in phase-shifted full-bridge (PSFB) converters. The conventional analysis of the spurious turn-on phenomenon does not establish in the PSFB converter as realizing zero voltage switching (ZVS). Firstly, a circuit model is proposed taking into account the parasitic capacitors and inductors of the transistors, as well as the parasitic elements of the power circuit loop. Second, an exhaustive investigation into the impact of all these parasitic elements on the spurious turn-on is conducted. It has been found that the spurious turn-on phenomenon is mainly attributed to the parasitic inductors of the power circuit loop, while the parasitic inductors of the transistors have a weak impact on this phenomenon. In addition, the operation principle of the PSFB converter makes the leading and lagging legs have distinguished differences with respect to the spurious turn-on problems. Design guidelines are given based on the theoretical analysis. Finally, detailed simulation and experimental results obtained with a 1.5 kW PSFB converter are given to validate proposed analysis.

위상천이 풀-브릿지 PWM 컨버터의 이산 시간 모델링 및 제어기 설계 (Discrete Time Domain Modeling and Controller Design of Phase Shifted Full Bridge PWM Converter)

  • 임정규;임수현;정세교
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.135-137
    • /
    • 2007
  • A phase shifted full-bridge PWM converter (PSFBC) has been used as the most popular topology for many applications. But, for the reasons of the cost and performance, the control circuits for the PSFBC have generally been implemented using analog circuits. The studies on the digital control of the PSFBC were recently presented. However, they considered only the digital implementation of the analog controller. This paper presents the modeling and design of the digital controller for the PSFBC in the discrete time domain. The discretized PSFBC model is first derived considering the sampling effect. Based on this model, the digital controller is directly designed in discrete time domain. The simulation and experimental results are provided to verify the proposed modeling and controller design.

  • PDF

Integrated Magnetic Transformer for ZVS Phase Shift Full Bridge Converter

  • 이형란;신용환;원재선;김종선;신휘범
    • 전력전자학회논문지
    • /
    • 제15권2호
    • /
    • pp.119-126
    • /
    • 2010
  • An integrated magnetic (IM) transformer is proposed for a phase shifted full bridge (PSFB) converter with zero voltage switching (ZVS). In a proposed IM transformer, the transformer is located on the center leg of E-core and the output inductor is wound on two outer legs with air gap. The proposed IM transformer is analyzed by using the magnetic capacitor model. For reducing the core size, EE core is redesigned. The proposed IM transformer is experimentally verified on a 1.2 kW prototype converter. The converter efficiency with the proposed IM transformer is about 93 % at full load and its volume size can be reduced. It can be expected that the power density can be largely increased with the proposed IM transformer.

An Inherent Zero-Voltage and Zero-Current-Switching Full-Bridge Converter with No Additional Auxiliary Circuits

  • Wang, Jianhua;Ji, Baojian;Wang, Hongbo;Chen, Naifu;You, Jun
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.610-620
    • /
    • 2015
  • An inherent zero-voltage and zero-current-switching phase-shifted full-bridge converter with reverse-blocking insulated-gate bipolar transistor (IGBT) or non-punch-through IGBT is proposed in this paper. This converter not only ensures that the switches in the lagging leg works at zero-current switching, but also minimizes circulating conduction loss without any additional auxiliary circuits. A 1.2 kW hardware prototype is designed, fabricated, and tested to verify the proposed topology. The control loop design procedures with small-signal models are also presented. A simple, low-cost, and robust democratic current-sharing circuit is also introduced and verified in this study. The proposed converter is a suitable alternative for compact, cost-effective applications with high-voltage input.

전기자동차 탑재형 충전기 응용에서 위상변조 풀브리지 컨버터 성능 분석과 그 개선에 관한 연구 (Research on the Analysis and Improvement of the Performance of the Phase-Shifted Full-Bridge Converter for Electric Vehicle Battery Charger Applications)

  • 이일운
    • 전력전자학회논문지
    • /
    • 제20권5호
    • /
    • pp.479-490
    • /
    • 2015
  • The conventional phase-shifted full-bridge (PSFB) converter with an LC filter has been widely used for high-power applications of over 1.0 kW. However, the PSFB converter cannot obtain optimal power conversion efficiency during the battery charging in electric vehicle (EV) on-board battery charger applications because of its unique drawbacks, such as a large circulating current and very high voltage stress in the rectifier diodes. As a result, the converters with a capacitive filter, such as LLC resonant converters, replace the PSFB converter in the EV chargers. This study analyzes the problems of the PSFB converter for EV on-board charger applications in detail. Moreover, the newest converters based on the conventional PSFB converter are reviewed. On the basis of the reviews, new PSFB converter topologies are proposed for EV charger applications. The new topologies are formed by connecting the rectifier stage in the PSFB converter with the output of an LLC resonant converter in series. Many problems of the conventional PSFB converter for EV charger applications can be solved and the performance can be more improved because of this structure; this idea is confirmed by an experiment consisting of prototype battery chargers under the output voltage range of 250-450 Vdc at 3.3 kW.