• Title/Summary/Keyword: Phase-shifted full-bridge

Search Result 79, Processing Time 0.02 seconds

A Study on the Digital Control of a ZVS-Full Bridge Converter (ZVS-Full Bridge Converter의 디지털 제어에 관한 연구)

  • 최현식;이재학
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.96-102
    • /
    • 1998
  • This paper describes the design of the digital controller for Full-Bridge Phase-shifted converter with zero-voltage switching (ZVS). Although digital control techniques are widely used in the area of inverters and motor drives, their use for the control of high-frequency switching power supply is still rare. Therefore, this paper presents design method of digital controller of Full-Bridge Phase-shifted converter with zero-voltage switching (ZVS) and compares with conventional analog controller. The controller design is optimized by running computer simulation with the MATLAB numerical calculation package.

  • PDF

An Improved ZVZCS PWM FB DC/DC Converter Using the Modified Clamp Circuit (개선된 Clamp Circuit 적용 ZVZCS FB DC/DC 컨버터)

  • 김은수;조기연;김윤호;이진수
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.643-645
    • /
    • 1999
  • The conventional high frequency phase-shifted full bridge dc/dc converter has a disadvantage that a circulating current flows through transformer and switching devices during the freewheeling interval. Due to this circulating current, RMS current stress, conduction losses of transformer and switching devices are increased. To alleviate this problem, this paper provides a circulating current free type high frequency soft switching phase-shifted full bridge (FB) dc/dc converter with the modified energy recovery snubber (ERS) attached at the secondary side of transforemr.

  • PDF

High Efficiency Design Procedure of a Second Stage Phase Shifted Full Bridge Converter for Battery Charge Applications Based on Wide Output Voltage and Load Ranges

  • Cetin, Sevilay
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.975-984
    • /
    • 2018
  • This work presents a high efficiency phase shifted full bridge (PSFB) DC-DC converter for use in the second stage of a battery charger for neighborhood electrical vehicle (EV) applications. In the design of the converter, Lithium-ion battery cells are preferred due to their high voltage and current rates, which provide a high power density. This requires wide range output voltage regulation for PSFB converter operation. In addition, the battery charger works with a light load when the battery charge voltage reaches its maximum value. The soft switching of the PSFB converter depends on the dead time optimization and load condition. As a result, the converter has to work with soft switching at a wide range output voltage and under light conditions to reach high efficiency. The operation principles of the PSFB converter for the continuous current mode (CCM) and the discontinuous current mode (DCM) are defined. The performance of the PSFB converter is analyzed in detail based on wide range output voltage and load conditions in terms of high efficiency. In order to validate performance analysis, a prototype is built with 42-54 V / 15 A output values at a 200 kHz switching frequency. The measured maximum efficiency values are obtained as 94.4% and 76.6% at full and at 2% load conditions, respectively.

Dead-Time for Zero-Voltage-Switching in Battery Chargers with the Phase-Shifted Full-Bridge Topology: Comprehensive Theoretical Analysis and Experimental Verification

  • Zhang, Taizhi;Fu, Junyu;Qian, Qinsong;Sun, Weifeng;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.425-435
    • /
    • 2016
  • This paper presents a comprehensive theoretical analysis and an accurate calculation method of the dead-time required to achieve zero-voltage-switching (ZVS) in a battery charger with the phase-shifted full-bridge (PSFB) topology. Compared to previous studies, this is the first time that the effects of nonlinear output filter inductance, varied Miller Plateau length, and blocking capacitors have been considered. It has been found that the output filter inductance and the Miller Plateau have a significant influence on the dead-time for ZVS when the load current varies a lot in battery charger applications. In addition, the blocking capacitor, which is widely used to prevent saturation, reduces the circulating current and consequently affects the setting of the dead-time. In consideration of these effects, accurate analytical equations of the dead-time range for ZVS are deduced. Experimental results from a 1.5kW PSFB battery charger prototype shows that, with the proposed analysis, an optimal dead-time can be selected to meet the specific requirements of a system while achieving ZVS over wide load range.

A New High Efficiency Phase Shifted Full Bridge Converter for a Power Sustaining Module of Plasma Display Panel

  • Lee Woo-Jin;Kim Chong-Eun;Han Sang-Kyoo;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.45-51
    • /
    • 2006
  • A new high efficiency phase shifted full bridge (PSFB) converter for the power sustaining module of a plasma display panel (PDP) is proposed in this paper. The proposed converter employs a voltage doubler rectifier without an output inductor. Since it has no output inductor, the voltage stresses of the secondary rectifier diodes can be clamped at the output voltage level. No dissipative resistor-capacitor (RC) snubber for rectifier diodes is needed. Therefore, high efficiency, as well as, a low noise output voltage can be realized. Due to the elimination of the large output inductor, it features a simple structure, lower cost, smaller mass and lighter weight. Furthermore, the proposed converter has wide zero voltage switching (ZVS) ranges with low current stresses of the primary switches. Also the resonance between the leakage inductor of the transformer and the capacitor of the voltage doubler cell reduces the current stresses of the rectifier diodes. In this paper, operational principles, an analysis of the proposed converter and experimental results are presented.

Design of High-Efficiency Full-Bridge Converter and Inverter for ESS (ESS용 고효율 풀브리지 컨버터 및 인버터 설계)

  • Jung, Jae-Hun;Lee, Chang-woo;Choi, Jin-ku
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.685-688
    • /
    • 2015
  • A phase-shift full-bridge converter is widely used conventional converter. If the input power change in the variation of the output voltage, there is a time interval freewheeling according to a duty change. This is a factor of reducing the efficiency. In this paper, we propose a method for improving the efficiency of the converter/inverter systems that require high efficiency in the ESS. The proposed method was used for the duty control for solving the fail problem ZVS(Zero Voltage Switching) in Freewheeling interval. The proposed method was verified by experiments.

  • PDF

Digital Control of Secondary Active Clamp Phase-Shifted Full-Bridge Converters

  • Che, Yanbo;Ma, Yage;Ge, Shaoyun;Zhu, Dong
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.421-431
    • /
    • 2014
  • A DSP-based self-adaptive proportional-integral (PI) controller to control a DC-DC converter is proposed in this paper. The full-bridge topology is adopted here to obtain higher power output capability and higher conversion efficiency. The converter adopts the zero-voltage-switching (ZVS) technique to reduce the conduction losses. A parallel secondary active clamp circuit is added to deal with the voltage overshoot and ringing effect on the transformer's secondary side. A self-adaptive PI controller is proposed to replace the traditional PI controller. Moreover, the designed converter adopts the constant-current and constant-voltage (CC-CV) output control strategy. The secondary active clamp mechanism is discussed in detail. The effectiveness of the proposed converter was experimentally verified by an IGBT-based 10kW prototype.

A High Efficiency Phase-Shifted Full-Bridge Converter with Wide Input Voltage Range (넓은 입력전압 범위에서 높은 효율을 가지는 위상천이 풀브릿지 컨버터)

  • Han, Jung-Kyu;Choi, Seung-Hyun;Moon, Gun-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.66-69
    • /
    • 2019
  • This study proposes a high-efficiency phase-shifted full-bridge (PSFB) converter with a wide input voltage range. The conventional PSFB converter is a useful topology in high-power applications. This converter not only achieves the zero-voltage switching of the primary switches, but also has small RMS current in the primary side. However, because the conventional PSFB converter has large freewheeling current in the primary side when it is designed considering the hold-up time of the converter, such a converter has high conduction loss at the primary switches. To solve this problem, a new PSFB converter is proposed in this study. The experiment is implemented with an input voltage ranging from a 320 V-400 V and an output power specification of 715 W.

A PV-Module Integrated Phase Shift Full Bridge Converter for EV (태양광 모듈 통합 전기 자동차용 Phase Shift Full Bridge Converter)

  • Hwang, Yun-Kyung;Nam, Kwang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.425-432
    • /
    • 2020
  • The phase-shifted, full-bridge (PSFB) DC-DC converter is widely used in electric vehicles (EVs) to charge a low-voltage (12 V) battery from a high-voltage battery. A Photovoltaic (PV) module-integrated PSFB converter is proposed for the EV power conversion system. The converter is useful because solar energy can be utilized to extend the driving range. The buck converter circuit is simply realized by adding one switch to the conventional PSFB converter's secondary side. For the inductor and diode, the existing components in the PSFB converter are shared. The proposed converter can charge a low-voltage battery from the PV module with maximum power point tracking. In addition, the two power sources can be used simultaneously, and efficiency is increased by reducing the circulating current, which is a problem for the conventional PSFB converter.

Hybrid Control Strategy of Phase-Shifted Full-Bridge LLC Converter Based on Digital Direct Phase-Shift Control

  • Guo, Bing;Zhang, Yiming;Zhang, Jialin;Gao, Junxia
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.802-816
    • /
    • 2018
  • A digital direct phase-shift control (DDPSC) method based on the phase-shifted full-bridge LLC (PSFB-LLC) converter is presented. This work combines DDPSC with the conventional linear control to obtain a hybrid control strategy that has the advantages of linear control and DDPSC control. The strategy is easy to realize and has good dynamic responses. The PSFB-LLC circuit structure is simple and works in the fixed frequency mode, which is beneficial to magnetic component design; it can realize the ZVS of the switch and the ZCS of the rectifier diode in a wide load range. In this work, the PSFB-LLC converter resonator is analyzed in detail, and the concrete realization scheme of the hybrid control strategy is provided by analyzing the state-plane trajectory and the time-domain model. Finally, a 3 kW prototype is developed, and the feasibility and effectiveness of the DDPSC controller and the hybrid strategy are verified by experimental results.