• Title/Summary/Keyword: Phase-Noise

Search Result 2,217, Processing Time 0.026 seconds

Vibration and Acoustic Noise Reduction Method of SRM Using Auxiliary Winding (보조권선 활용에 의한 SRM의 진동 및 소음 저감 방안)

  • 정태욱
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.548-556
    • /
    • 2003
  • Switched reluctance motor(SRM) has simple magnetic structure, and needs simple power electronic driving circuit. It is very useful for wide range adjustable speed drive system. But, SRM drive generates large vibration and acoustic noise because it is commutated individually by step pulse m.m.f of each phase. In the vibration and acoustic noise characteristics. the considerable vibration and noise is induced by radial deforming of stator, so the frequency of dominant vibration and noise is coincident with the frequency of natural frequency of mechanical structure. This radial vibration force is generated by abrupt change of radial magnetic force in the phase commutation region. This paper studied about simple electromagnetic structure of SRM using auxiliary compensating winding for the reduction of noise and vibration. This auxiliary winding is coupled with all phase windings electromagnetically and absorb and transfer magnetic energy variation from phase to other phase. By this interaction of phase windings and compensating winding can reduce abrupt radial force change and vibration and acoustic noise. In this paper the improvement effect is examined by the test of prototype machine.

Establishment on Management Plan of Environmental Noise with Noise Map (소음지도를 활용한 환경소음 관리계획 수립)

  • Sun, Hyosung
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.2
    • /
    • pp.123-131
    • /
    • 2011
  • The objective of this study is to prepare the effective management plan of environmental noise with a noise map, and the guideline on the management plan of environmental noise was suggested through the review of existing application examples. The management plan of environmental noise with a noise map includes the practical contents in the stages of subdivision of management areas, establishment of reduction measures, opinion collection, post investigation, and reformulation of management plan. First, the classification of management regions is performed considering the excess degree of noise standard and the facility type in the phase of subdivision of management areas. Second, the optimal management plan is established through the investigation of regional characteristics and various noise reduction measures in the phase of establishment of reduction measures, which includes the examination of noise reduction effects with a noise map and the budget planning with the costing of noise reduction measures. Third, the opinion survey with a local resident and a expert is carried out in order to prove the validity of the management plan in the phase of opinion collection, and the management plan is modified with gathered opinions. Fourth, the post examination plan with noise measurement is performed in order to verify the real effect of noise reduction measures according to the management plan in the phase of post investigation. Finally, the amendment of the management plan as well as the improvement of a noise map is carried out at a regular cycle in the phase of reformulation of management plan.

An Analysis of Noise Characteristics According to the Excitation Method of SRM (SRM의 여자방식에 따른 소음특성 해석)

  • Mun, Jae-Won;O, Seok-Gyu;An, Jin-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.9
    • /
    • pp.565-571
    • /
    • 2000
  • SRM has been applied to many commercial applications that require economical advantages and high performance abilities. But it has some drawbacks such as acoustic noise due to the abrupt change of mmf level when commutation. The abrupt change of a phase excitation produces mechanical stresses and it results in torque ripple and noise. This paper deals with an analysis of vibration and noise in SRM drive. Several types of excitation method are taken into account. The 1-phase and 2-phase excitation technique of short-pitch winding 2-phase excitation technique of full-pitch winding are tested. The acoustic noise is reduced remarkably through the sequential phase excitation in the 2-phase excitation. It is because that the scheme reduces abrupt change of excitation level by distributed balanced excitation with free-wheeling during commutation.

  • PDF

A Novel Phase Noise Reduction In Oscillator Using PBG(Photonic Band Gap) Structure and Feedforward Circuit

  • Seo, Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.204-207
    • /
    • 2005
  • In this paper, PBG structure and feedforward circuit has been used to suppress the phase noise of the oscillator. Microstrip line resonator have low Q, but we can obtain high LO power by feedforward circuit and improve the resonator Q by the PBG, simultaneously. The proposed oscillator which uses PBG and feedforward circuit shows 0${\~}$20 dB phase noise reduction compared to the conventional oscillator. We have obtained -115.8 dBc of phase noise at 100 kHz offset from 2.4 GHz center.

Phase Noise Reduction Technique in Oscillator Using PBG (PBG를 이용한 Oscillator의 Phase Noise Reduction에 관한 연구)

  • 오익수;서철헌
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.358-361
    • /
    • 2003
  • In this paper, a new technique to reduce the phase noise in microwave oscillators is proposed using the resonant characteristics of the Photonic Bandgap(PBG). Microstrip line resonator has the low Q(Qaulity factor). Therefore, as PBG structure was applied, we examined that the phase noise of the oscillator has been reduced.

  • PDF

A Study on Phase-Noise and Jitter due to the Power Supply Noise of the CMOS Ring Oscillator (CMOS 링발진기의 전원 잡음에 의한 위상잡음과 Jitter 연구)

  • Park Se-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.298-302
    • /
    • 2006
  • Models for the phase noise and jitter of the ring oscillator with the power supply noise are suggested and verified by simulations. The power supply noise is converted into the phase-noise by the narrow band phase modulation. The phase-noise appears as sideband frequencies apart from the center frequency of the ring oscillator as much as the frequency of the power supply noise. A jitter model describing the linear relation of jitter with the amplitude of the power supply noise is suggested and verified by simulation.

Phase noise spectrum analysis of COMS communication transponder (천리안위성 통신탑재체의 위상잡음 스펙트럼 해석)

  • Jang, Jeng-Sik;Oh, Dae-Ho;Kim, Young-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.499-501
    • /
    • 2011
  • The phase noise spectrum distribution of COMS Communication transponder was measured and analyzed in the view point of transmission scheme. The effects of phase noise are also analyzed according to the transmission methods. The phase noise of COMS communication transponder may be increased because of utilization of ka-band. So the effects of phase noise will be increased in conditions of high-order transmission mode. The phase noise characteritics are measured for COMS communication transponder with MSM function and the effects for phase noise are analyzed in this paper.

  • PDF

Analysis of Phase Noise in Digital Hybrid PLL Frequency Synthesizer (디지탈 하이브리드 위상고정루프(DH-PLL) 주파수 합성기의 위상잡음 분석)

  • 이현석;손종원;유흥균
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.649-656
    • /
    • 2002
  • This paper addresses the phase noise analysis of high-speed DH-PLL(Digital Hybrid Phase-Locked Loops) frequency synthesizer. Because of the additional quantization noise of D/A converter in DH-PLL, the phase noise of DH-PLL is increased than the conventional PLL. Three kinds of noise sources such as reference input, D/A converter, and VCO(Voltage Controlled Oscillator) are considered to analyze the phase noise. It largely depends on the closed loop bandwidth and frequency synthesis division ratio(N) so that we can decide the optimal closed loop bandwidth to minimize the phase noise of DH-PLL. It is shown that the simulation results closely match with the results of analytical approach.

A Low Close-in Phase Noise 2.4 GHz RF Hybrid Oscillator using a Frequency Multiplier

  • Moon, Hyunwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • This paper proposes a 2.4 GHz RF oscillator with a very low close-in phase noise performance. This is composed of a low frequency crystal oscillator and three frequency multipliers such as two doubler (X2) and one tripler (X3). The proposed oscillator is implemented as a hybrid type circuit design using a discrete silicon bipolar transistor. The measurement results of the proposed oscillator structure show -115 dBc/Hz close-in phase noise at 10 kHz offset frequency, while only dissipating 5 mW from a 1-V supply. Its close-in phase noise level is very close to that of a low frequency crystal oscillator with little degradation of noise performance. The proposed structure which is consisted of a low frequency crystal oscillator and a frequency multiplier provides new method to implement a low power low close-in phase noise RF local oscillator.

Analysis of Effects of Phase Noise in Radar System (위상잡음이 레이더 시스템에 미치는 영향 분석)

  • Park, Jinsung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.373-381
    • /
    • 2013
  • In this paper, the effects of phase noise on the radar system were analyzed in terms of 3 point of view. The impact(s) on the compressed pulse waveform, the FMICW(Frequency Modulated Interrupted Continuous Wave) radar performance and the receiver sensitivity were investigated. From the investigation, it was indicated that the phase noise over 10 kHz offset frequency makes the side lobe level of compressed pulse worse. Also it was founded that the FMICW radar performance, especially at the noise level of range profile, is related to the phase noise. Finally, the investigation showed that the phase noise at local oscillator affects the receiver sensitivity.