• 제목/요약/키워드: Phase-Field Model

검색결과 572건 처리시간 0.03초

스텐트 삽입에 의한 방추형 동맥류 내부 유동의 변화 (Flow Changes by Stent Insertion in Fusiform Aneurysm Models)

  • 이계한;서남현
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권6호
    • /
    • pp.535-542
    • /
    • 2001
  • 스텐트를 이용한 동맥류 색전술은 방추형 동맥류 등 목이 넓은 광경동맥류의 치료에 최근 사용되고 있다. 동맥류 내부의 혈류유동은 혈전의 형성 및 동맥류 폐색에 중요한 역할을 하므로 스텐트의 삽입으로 인한 동맥류 내부 혈류 유동의 변화를 고찰하기 위하여 광색성 염료를 이용한 유동가시화 방법을 사용하였다. 제작된 방추형 동맥류 모델에 대해 맥동 유동시 동맥류 벽 다섯 위치에서 유동장의 정성적 관탈 및 벽 전단변형률의 측정이 수행되었다. 스텐트의 삽입은 동맥류 내부의 유동을 감소시켰으며 동맥류 내부의 느린 와류유동이 감속후기가지 지속되었다. 또한 스텐트가 삽입된 모델은 스텐트가 없는 모델에 비하여 벽 전단변형률이 감소하였으며. OSI는 증가하였다 이러한 혈류유동의 변화는 혈전의 형성 및 내막거식증대가 일어나기 쉬운 혈류역학적 환경을 제공한다. 따라서 스텐트의 삽입으로 인한 동맥류 내부의 혈류 유동은 혈전의 형성 및 동맥류 폐색을 촉진하도록 변화함을 알 수 있었다..

  • PDF

아파트 단지 인공지반의 계획적 평가에 관한 연구 (A Study on the Landscape Planning Evaluation on Apartment Artificial Ground)

  • 김유일;오정학;김인혜;윤홍범
    • 한국조경학회지
    • /
    • 제26권3호
    • /
    • pp.297-311
    • /
    • 1998
  • Landscaping on artificial ground is currently served as a means to imposing a greenery benefit on high-density and high-rise apartment sites. It functions as a sub-hierarchy in apartment planning such as ornamental element from the past. Major parking space tends to be allocated on the basement area in response to the required parking regulation. Therefore, competitive relatioinship between the parking and greenery space I limited outdoor of apartments leads to the development planning strategy and technology of artificial ground. This study aims at evaluating landscape planning on artificial ground of apartment complex through several approaches such as site survey, plan drawing analysis, and interview with related field experts. 15 survey apartment sites including Bundang Model, Shindaebang-dong, Pyoungchon Hyundai Apartments have been selected for conducting the research. Main results of this study are summarized below : First, scattering allocation of artificial ground between apartment building units is a dominant plan layout type among the survey sites. Even though unifying allocation type has an advantage to maximize underground parking space, it has a difficulty in maintaining proper soil ground base for nurturing plants. Therefore, underground parking space should be planned by unifying allocation type placed separately from apartment units. This plan type can provide a balanced planting between soil and artificial ground on surface level. Second, It is strongly recommended to integrate the whole planting base which involves architectural structure, drainage, and water proofing above the planting design. When considering that process as a professional subject dealing with natural material such as trees and shrubs, those tasks should be directed by landscape architectural divison and landscape architect. And planting area for artificial ground has to be specified in initial phase of architectural design. This step provides an opportunity to make a proper decision on structural load, drainage, and water proof design as an integrated part of the management.

  • PDF

의왕시내 BTEX 오염 부지에서의 자연 정화법 이용 적합성 고찰 (Assessment of Monitored Natural Attenuation as Remediation Approach for a BTEX Contaminated Site in Uiwang City)

  • 이민효;윤정기;박종환;이문순;강진규;이석영
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1999년도 정기총회 및 춘계 공동 학술발표회
    • /
    • pp.149-156
    • /
    • 1999
  • In the United States (U.S.), the monitored natural attenuation (MNA) approach has been used as an alternative remedial option for organic and inorganic compounds retained in soil and dissolved in groundwater. The U.S. Environmental Protection Agency (EPA) defines the MNA as“in-situ naturally-occurring processes include biodegradation, diffusion, dilution, sorption, volatilization, and/or chemical and biochemical stabilization of contaminants and reduce contaminant toxicity, mobility or volume to the levels that are protective of human health and the environment”. The Department of Soil Environment. National Institute Environmental Research (NIER) is in the process for demonstrating the MNA approach as a potential remedial option for the BTEX contaminated site in Uiwang City. The project is charactering the research site in terms of the nature and extend of contamination, biological degradation rate, and geochemical and hydrological properties. The microbial-degradation rate and effectiveness of nutrient and redox supplements will be determined through laboratory batch and column tests. The geochemical process will be monitored for determining the concentration changes of chemical species involved in the electron transfer processes that include methanogenesis, sulfate and iron reduction, denitrification, and aerobic respiration. Through field works, critical soil and hydrogeologic parameters will be acquired to simulate the effects of dispersion, advection, sorption, and biodegradation on the fate and transport of the dissolved-phase BTEX plume using Bioplume III model. The objectives of this multi-years research project are (1) to evaluate the MNA approach using the BTEX contaminated site in Uiwang City, (2) to establish a standard protocol for future application of the approach, (3) to investigate applicability of the passive approach as a secondary treatment remedy after active treatments. In this presentation, the overall picture and philosophy behind the MNA approach will be reviewed. Detailed discussions of the site characterization/monitoring plans and risk-based decision-making processes for the demonstration site will be included.

  • PDF

A study on membrane technology for surface water treatment: Synthesis, characterization and performance test

  • Haan, Teow Yeit;Shah, Mubassir;Chun, Ho Kah;Mohammad, Abdul Wahab
    • Membrane and Water Treatment
    • /
    • 제9권2호
    • /
    • pp.69-77
    • /
    • 2018
  • The use of membrane as an innovative technology for water treatment process has now widely been accepted and adopted to replace the conventional water treatment process in increasing fresh water production for various domestic and industrial purposes. In this study, ultrafiltration (UF) membranes with different formulation were fabricated via phase inversion method. The membranes were fabricated by varying the polymer concentration (16 wt%, 18 wt%, 20 wt%, and 21 wt%). A series of tests, such as field emission scanning electron microscope (FESEM), pore size and porosity, contact angle, and zeta potential were performed to characterize the membranes. The membrane performance in terms of permeation flux and rejection were evaluated using a laboratory bench-scale test unit with mine water, lake water and tube well as model feed solution. Long hour filtration study of the membranes provides the information on its fouling property. Few pore blocking mechanism models were proposed to examine the behaviour of flux reduction and to estimate the fouling parameters based on different degree of fouling. 21 wt% PVDF membrane with smaller membrane pore size showed an excellent performance for surface water treatment in which the treated water complied with NWQS class II standard.

Propulsion System Design and Optimization for Ground Based Interceptor using Genetic Algorithm

  • Qasim, Zeeshan;Dong, Yunfeng;Nisar, Khurram
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.330-339
    • /
    • 2008
  • Ground-based interceptors(GBI) comprise a major element of the strategic defense against hostile targets like Intercontinental Ballistic Missiles(ICBM) and reentry vehicles(RV) dispersed from them. An optimum design of the subsystems is required to increase the performance and reliability of these GBI. Propulsion subsystem design and optimization is the motivation for this effort. This paper describes an effort in which an entire GBI missile system, including a multi-stage solid rocket booster, is considered simultaneously in a Genetic Algorithm(GA) performance optimization process. Single goal, constrained optimization is performed. For specified payload and miss distance, time of flight, the most important component in the optimization process is the booster, for its takeoff weight, time of flight, or a combination of the two. The GBI is assumed to be a multistage missile that uses target location data provided by two ground based RF radar sensors and two low earth orbit(LEO) IR sensors. 3Dimensional model is developed for a multistage target with a boost phase acceleration profile that depends on total mass, propellant mass and the specific impulse in the gravity field. The monostatic radar cross section (RCS) data of a three stage ICBM is used. For preliminary design, GBI is assumed to have a fixed initial position from the target launch point and zero launch delay. GBI carries the Kill Vehicle(KV) to an optimal position in space to allow it to complete the intercept. The objective is to design and optimize the propulsion system for the GBI that will fulfill mission requirements and objectives. The KV weight and volume requirements are specified in the problem definition before the optimization is computed. We have considered only continuous design variables, while considering discrete variables as input. Though the number of stages should also be one of the design variables, however, in this paper it is fixed as three. The elite solution from GA is passed on to(Sequential Quadratic Programming) SQP as near optimal guess. The SQP then performs local convergence to identify the minimum mass of the GBI. The performance of the three staged GBI is validated using a ballistic missile intercept scenario modeled in Matlab/SIMULINK.

  • PDF

Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs

  • Yu, Zhixiang;Zhu, Fu;Cao, Ruizhou;Chen, Xiaoxiao;Zhao, Lei;Zhao, Shichun
    • Wind and Structures
    • /
    • 제28권1호
    • /
    • pp.31-47
    • /
    • 2019
  • The accurate prediction of snow distributions under the wind action on roofs plays an important role in designing structures in civil engineering in regions with heavy snowfall. Affected by some factors such as building shapes, sizes and layouts, the snow drifting on roofs shows more three-dimensional characteristics. Thus, the research on three-dimensional snow distribution is needed. Firstly, four groups of stepped flat roofs are designed, of which the width-height ratio is 3, 4, 5 and 6. Silica sand with average radius of 0.1 mm is used to model the snow particles and then the wind tunnel test of snow drifting on stepped flat roofs is carried out. 3D scanning is used to obtain the snow distribution after the test is finished and the mean mass transport rate is calculated. Next, the wind velocity and duration is determined for numerical simulations based on similarity criteria. The adaptive-mesh method based on radial basis function (RBF) interpolation is used to simulate the dynamic change of snow phase boundary on lower roofs and then a time-marching analysis of steady snow drifting is conducted. The overall trend of numerical results are generally consistent with the wind tunnel tests and field measurements, which validate the accuracy of the numerical simulation. The combination between the wind tunnel test and CFD simulation for three-dimensional typical roofs can provide certain reference to the prediction of the distribution of snow loads on typical roofs.

국지성 집중호우 감시를 위한 천리안위성 2A호 대류운 전조 탐지 알고리즘 개발 (Development of GK2A Convective Initiation Algorithm for Localized Torrential Rainfall Monitoring)

  • 박혜인;정성래;박기홍;문재인
    • 대기
    • /
    • 제31권5호
    • /
    • pp.489-510
    • /
    • 2021
  • In this paper, we propose an algorithm for detecting convective initiation (CI) using GEO-KOMPSAT-2A/advanced meteorological imager data. The algorithm identifies clouds that are likely to grow into convective clouds with radar reflectivity greater than 35 dBZ within the next two hours. This algorithm is developed using statistical and qualitative analysis of cloud characteristics, such as atmospheric instability, cloud top height, and phase, for convective clouds that occurred on the Korean Peninsula from June to September 2019. The CI algorithm consists of four steps: 1) convective cloud mask, 2) cloud object clustering and tracking, 3) interest field tests, and 4) post-processing tests to remove non-convective objects. Validation, performed using 14 CI events that occurred in the summer of 2020 in Korean Peninsula, shows a total probability of detection of 0.89, false-alarm ratio of 0.46, and mean lead-time of 39 minutes. This algorithm can be useful warnings of rapidly developing convective clouds in future by providing information about CI that is otherwise difficult to predict from radar or a numerical prediction model. This CI information will be provided in short-term forecasts to help predict severe weather events such as localized torrential rainfall and hail.

Use of deep learning in nano image processing through the CNN model

  • Xing, Lumin;Liu, Wenjian;Liu, Xiaoliang;Li, Xin;Wang, Han
    • Advances in nano research
    • /
    • 제12권2호
    • /
    • pp.185-195
    • /
    • 2022
  • Deep learning is another field of artificial intelligence (AI) utilized for computer aided diagnosis (CAD) and image processing in scientific research. Considering numerous mechanical repetitive tasks, reading image slices need time and improper with geographical limits, so the counting of image information is hard due to its strong subjectivity that raise the error ratio in misdiagnosis. Regarding the highest mortality rate of Lung cancer, there is a need for biopsy for determining its class for additional treatment. Deep learning has recently given strong tools in diagnose of lung cancer and making therapeutic regimen. However, identifying the pathological lung cancer's class by CT images in beginning phase because of the absence of powerful AI models and public training data set is difficult. Convolutional Neural Network (CNN) was proposed with its essential function in recognizing the pathological CT images. 472 patients subjected to staging FDG-PET/CT were selected in 2 months prior to surgery or biopsy. CNN was developed and showed the accuracy of 87%, 69%, and 69% in training, validation, and test sets, respectively, for T1-T2 and T3-T4 lung cancer classification. Subsequently, CNN (or deep learning) could improve the CT images' data set, indicating that the application of classifiers is adequate to accomplish better exactness in distinguishing pathological CT images that performs better than few deep learning models, such as ResNet-34, Alex Net, and Dense Net with or without Soft max weights.

종합건설사업관리 사업관리비용산정을 위한 방법연구 - 기획단계에서 실시설계 입찰까지 - (A Study on the Method for the Estimate of Construction Management in the Program Management)

  • 백명창;박준모;박길범;김옥규
    • 한국건설관리학회논문집
    • /
    • 제15권5호
    • /
    • pp.3-12
    • /
    • 2014
  • 종합건설사업관리 발주의 대형화, 복합화로 사업관리 비용산정을 위하여 보다 정확하고 신속한 기법이 요구되나, 대부분의 경우 사업비 추정을 위한 대가산정을 유사사례를 기준으로 사업관리비 산정을 추정함으로써 사업별 특성을 반영할 수 없으며, 사업관리비 산정에 대한 정확성도 떨어지고 그에 따른 정책 및 예산을 반영하기가 어려운 것이 사실이다. 따라서 종합사업관리의 사업비 추정을 위한 프로젝트 기준모델을 개발하여 프로젝트별 특성을 반영한 인자를 적용하여 사업관리 인력 및 비용 산정을 쉽게 할 수 있다. 본 연구에서는 종합사업관리용역 비용 산정을 위하여 기획단계에서 실시설계 입찰단계까지의 기본모델 작성에 대한 각 단계별 세부업무 패키지를 분류하고, 각 패키지의 상세 과업내용에 대한 분야별, 등급별 투입인력을 산정하여 보다 상세하고 객관적인 사업관리 비용을 산정하는 방법론에 대하여 연구하고자 한다. 본 연구의 결과물은 발주자와 사업관리 용역업자 간의 분쟁을 사전에 예방할 수 있으며, 발주자 입장에서는 투명한 사업관리용역 비용산정이 가능해지고, 용역업자 입장에서는 업무성과에 대한 합리적인 대가를 지급받을 수 있는 근거를 제시할 수 있을 것이라고 기대한다.

설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.