• Title/Summary/Keyword: Phase-Field Model

Search Result 573, Processing Time 0.031 seconds

Zero-shot voice conversion with HuBERT

  • Hyelee Chung;Hosung Nam
    • 말소리와 음성과학
    • /
    • 제15권3호
    • /
    • pp.69-74
    • /
    • 2023
  • This study introduces an innovative model for zero-shot voice conversion that utilizes the capabilities of HuBERT. Zero-shot voice conversion models can transform the speech of one speaker to mimic that of another, even when the model has not been exposed to the target speaker's voice during the training phase. Comprising five main components (HuBERT, feature encoder, flow, speaker encoder, and vocoder), the model offers remarkable performance across a range of scenarios. Notably, it excels in the challenging unseen-to-unseen voice-conversion tasks. The effectiveness of the model was assessed based on the mean opinion scores and similarity scores, reflecting high voice quality and similarity to the target speakers. This model demonstrates considerable promise for a range of real-world applications demanding high-quality voice conversion. This study sets a precedent in the exploration of HuBERT-based models for voice conversion, and presents new directions for future research in this domain. Despite its complexities, the robust performance of this model underscores the viability of HuBERT in advancing voice conversion technology, making it a significant contributor to the field.

준 일차원 다상 반응유동 기법을 이용한 케로신/과산화수소 액체 핀틀 추력기 성능해석 연구: Part I. 주요 구성 모델 검증 (Performance Analysis of Liquid Pintle Thruster Using Quasi-one-dimensional Multi-phase Reaction Flow: Part I Key Sub-model Validation)

  • 강정석;복장한;성홍계;권민찬;허준영
    • 한국추진공학회지
    • /
    • 제24권6호
    • /
    • pp.69-77
    • /
    • 2020
  • 액체 핀틀 추력기의 성능해석을 위해 준 일차원 다상 반응유동 해석코드를 개발하였다. 해석코드의 주요모델로서 다상 유동장, 액적의 기화, 다상 연소, 액체 막냉각 등의 모델들을 적용하였다. 액적기화 모델은 Abramzon의 기화모델을 적용하였으며 연소 모델은 flamelet 모델을 적용하였다. 막냉각 효과는 Shine의 모델을 적용하였다. 각 모델을 사용하여 산소-질소의 Sod shock 튜브, n-decane 액적기화, 케로신 다상연소, 막냉각 길이를 계산하여 선행 연구자의 결과와 비교 검증하였다.

물-기체 2상 유동 해석을 위한 Semi-Implicit 방법의 대류항에 대한 2차 정확도 확장 (IMPLEMENTATION OF A SECOND-ORDER INTERPOLATION SCHEME FOR THE CONVECTIVE TERMS OF A SEMI-IMPLICIT TWO-PHASE FLOW ANALYSIS SOLVER)

  • 조형규;이희동;박익규;정재준
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.13-22
    • /
    • 2009
  • A two-phase (gas and liquid) flow analysis solver, named CUPID, has been developed for a realistic simulation of transient two-phase flows in light water nuclear reactor components. In the CUPID solver, a two-fluid three-field model is adopted and the governing equations are solved on unstructured grids for flow analyses in complicated geometries. For the numerical solution scheme, the semi-implicit method of the RELAP5 code, which has been proved to be very stable and accurate for most practical applications of nuclear thermal hydraulics, was used with some modifications for an application to unstructured non-staggered grids. This paper is concerned with the effects of interpolation schemes on the simulation of two-phase flows. In order to stabilize a numerical solution and assure a high numerical accuracy, the second-order upwind scheme is implemented into the CUPID code in the present paper. Some numerical tests have been performed with the implemented scheme and the comparison results between the second-order and first-order upwind schemes are introduced in the present paper. The comparison results among the two interpolation schemes and either the exact solutions or the mesh convergence studies showed the reduced numerical diffusion with the second-order scheme.

DEVELOPMENT OF INTERFACIAL AREA TRANSPORT EQUATION

  • ISHII MAMORU;KIM SEUNGJIN;KELLY JOSEPH
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.525-536
    • /
    • 2005
  • The interfacial area transport equation dynamically models the changes in interfacial structures along the flow field by mechanistically modeling the creation and destruction of dispersed phase. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport mechanism for various sizes of bubbles, the transport equation is formulated for two characteristic groups of bubbles. The group 1 equation describes the transport of small-dispersed bubbles, whereas the group 2 equation describes the transport of large cap, slug or chum-turbulent bubbles. To evaluate the feasibility and reliability of interfacial area transport equation available at present, it is benchmarked by an extensive database established in various two-phase flow configurations spanning from bubbly to chum-turbulent flow regimes. The geometrical effect in interfacial area transport is examined by the data acquired in vertical fir-water two-phase flow through round pipes of various sizes and a confined flow duct, and by those acquired In vertical co-current downward air-water two-phase flow through round pipes of two different sizes.

다상모델을 이용한 탁도계 버블트랩 내부 유동장에 관한 고찰 (A Study on the Flow Fields of Bubble Trap of Turbidimeter Using the Multiphase Model)

  • 이계복;김영도
    • 대한기계학회논문집B
    • /
    • 제31권11호
    • /
    • pp.963-970
    • /
    • 2007
  • The objectives of this study are to examine a bubble trap mechanism of the turbidimeter for low turbidity and to acquire it's technology concerned. Reynolds-Averaged Wavier-Stokes equation and Laglangian discrete phase model were applied to analyze a flow field in the bubble trap. 3D hybrid grid system was used to simulate the flow field of bubble trap and numbers of it's node point are about 110,000. From the comparison between the standard $k-{\varepsilon}$ model and the laminar state, it was found that the former estimated less the velocity in the outlet of bubble trap than the latter did, and that the former estimated more the shear stress at the wall of bubble trap than the latter did. And, it was possible to visualize the path of bubbles in the bubble trap and to copy the removal process of bubbles out bubble trap. Also, it was found that nearly most of bubbles in the bubble trap disappeared.

Motion behavior research of liquid micro-particles filtration at various locations in a rotational flow field

  • Yan, Yan;Lin, Yuanzai;Cheng, Jie;Ni, Zhonghua
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.163-170
    • /
    • 2017
  • This study presents a particle-wall filtration model for predicting the particle motion behavior in a typical rotational flow field-filtration in blower system of cooker hood. Based on computational fluid dynamics model, air flow and particles has been simulated by Lagrangian-particle/ Eulerian-gas approaches and get verified by experiment data from a manufacturer. Airflow volume, particle diameter and local structure, which are related to the particle filtration has been studied. Results indicates that: (1) there exists an optimal airflow volume of $1243m^3/h$ related to the most appropriate filtration rate; (2) Diameter of particle is the significant property related to the filtration rate. Big size particles can represent the filtration performance of blower; (3) More than 86% grease particles are caught by impeller blades firstly, and then splashed onto the corresponding location of worm box internal wall. These results would help to study the micro-particle motion behavior and evaluate the filtration rate and structure design of blower.

AP추진제의 연소면 형성 및 전파 모델링 연구 (A phase transformation model for burning surface in AP/HTPB propellant combustion)

  • 정태용;도영대;유지창;여재익
    • 한국항공우주학회지
    • /
    • 제38권4호
    • /
    • pp.363-368
    • /
    • 2010
  • 고체추진제의 연소가 진행될 때, 고체상에서 액체상으로, 액체상에서 기체상으로의 상변화가 일어난다. 이 때 추진제 표면에서는 액체상, 기체상이 동시에 존재하게 된다. 액체상과 기체상의 중간에서는 액체상과 기체상의 혼합으로 인하여 거품이 형성되는데, 이 구간을 용융층(Melt Layer)이라고 한다. 용융층의 윗부분, 즉 액체상과 기체상 사이에는 연소면(Burning Surface)이 존재한다. 일반적으로 고체추진제가 연소될 때 생성되는 용융층의 두께는 1기압에서 약 1마이크론 정도이다. 본 연구에서는 물리적인 상변화 현상을 상방정식을 이용하여 액체에서 기체로의 상변화 현상을 모사하였다. 이를 통하여 연소면의 두께, 형성과 전파를 모사하였다.

Energy Storage Characteristics In Fixed Beds (Charging, Storing, Discharging)

  • Hassanein, Soubhi A.;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2004년도 제29회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.17-23
    • /
    • 2004
  • In the present work, the numerical model was refined to predict the thermal analysis of energy storage in a fixed beds during (charging ,storing, discharging) mode. The governing energy equations of both fluid and the solid particles along with their initial and boundary conditions are derived using a two-phase, one dimensional model. The refined model is carried out by taking into account change of (air density , air specific heat) with air temperature and also by taking into considerations heat losses from bed to surrounding. Finite difference method was used to obtain solution of two governing energy equations of both fluid and solid particles through a computer program especially constructed for this purpose. The temperature field for the air and the solid are obtained, also efficiency of energy stored inside the bed is computed. Finally using refined model the effect of air flow rate per unit area Ga (0.2, 0.3, and 0.4 kg/$m^2$-s), and inlet air temperature (200, 250, 300 $^{\circ}C$) on energy storage characteristics was studied in three mode ( charging ,storing, discharging). The rock particles of diameter 1 em is used as bed material in this research.

  • PDF

다중입력 PSS 튜닝 방법과 612 MVA 화력기 적용: Part 1-IEEE PSS2A 튜닝 방법 (Tuning of Dual-input PSS and Its Application to 612 MVA Thermal Plant: Part 1-Tuning Methology of IEEE Type PSS2A Model)

  • 김동준;문영환;김성민;김진이;황봉환;조종만
    • 전기학회논문지
    • /
    • 제58권4호
    • /
    • pp.655-664
    • /
    • 2009
  • This paper, Part 1, describes the effective dual-input PSS parameter design procedure for the IEEE Type PSS2A against the Dangjin 612 MVA thermal plant's EX2000 excitation system. The suggested tuning technique used the model-based PSS tuning method and consisted of three steps: 1) generation system modeling; 2) determination of PSS2A model parameters using linear, time-domain transient and 3-phase simultaneous analyses, and 3) field testing and verification, which are described in Part 2. The effective PSS2A model parameters of EX2000 system in the Dangjin T/P #4 were designed according to the suggested procedure, and verified by using three analyses.

Numerical analysis on Deformation of Seabed Structures with various size materials by DEM

  • Kim, Mi-Kum;Kim, Chang-Je
    • 한국항해항만학회지
    • /
    • 제31권7호
    • /
    • pp.589-595
    • /
    • 2007
  • In the majority of previous studies on deformation of seabed structures using DEM, elements of structures have been assumed that it is composed with uniform materials or received fixed wave force, despite that actual submerged structures are composed with various size materials and influenced by complicated fluid field. The goal of this study is to develop a new model for analysis of seabed structure deformation using discontinuous structures composed with various size materials. As the first phase, a model using DEM and VOF, which can compute the deformation of submerged structures composed with various size materials, such as rubble mound structures, is proposed. A model test is carried out and then the validity of the model is discussed.