• Title/Summary/Keyword: Phase transition of $Fe_2O_3$

Search Result 60, Processing Time 0.027 seconds

High Pressure X-ray Diffraction Study of LiFePO4/C-olivine-like Phase (LiFePO4/C-유사 감람석 결정구조에 대한 고압 X-선회절연구)

  • Hwang, Gil-Chan;Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.35-44
    • /
    • 2013
  • Synthetic carbon-coated olivine-like structured lithium iron phosphate ($Li^+Fe^{2+}(PO_4)^{3-}/C$) powder composites were compressed up to 35.0 GPa in the symmetrical diamond anvil cell at room temperature. Bulk modulus of $LiFePO_4/C$ was determined to be $130.1{\pm}10.3$ GPa. New peak appears at the d-spacing of 3.386 ${\AA}$ above 18 GPa, and another new one at 2.854 ${\AA}$ around 35 GPa. The crystallographic symmetry of the sample (i.e. orthorhombic) is apparently retained up to 35 GPa as no clear evidence for the phase transition into spinel structure has been observed. The pressure-induced volume change in the M1 site ($Li^+O_6$) is more significant than those in M2($Fe^{2+}O_6$) and $PO_4$ tetrahedral sites.

Crystallization and Magnetic Properties of Iron Doped ZnO Diluted Magnetic Semicondutor (철을 미량 치환한 ZnO 희박자성반도체의 결정학적 및 자기적 특성 연구)

  • Ahn, Geun-Young;Park, Seung-Iel;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.92-95
    • /
    • 2005
  • $Zn_{1-x}\;^{57}Fe_xO(x=0.01, 0.02, 0.03)$ compounds were fabricated using the solid-state reaction method. In order to determine magnetic behavior and ionic state of the doped transition metal ($^{57}Fe$) in ZnO, we carried out $M\ddot{o}ssbauer$ measurements at various temperatures ranging from 13 to 295 K. $M\ddot{o}ssbauer$spectra for $Zn_{0.97}\;^{57}Fe_{0.03}O$ at 4.2 K have shown the ferromagnetic phase (sextet), but the only paramagnetic phase (doublet) is seen at 295 K. The hysteresis loop below 77 K for $Zn_{0.97}\;^{57}Fe_{0.03}O$ indicated the coexistence of ferromagnetic and paramagnetic phases.

Phase Transition Studies on BaTiO3 and PbTiO3 and Synthesis of Silicate Perovskite (BaTiO3와 PbTiO3에 대한 상(相)전이 연구와 규산염 페롭스카이트의 합성)

  • Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.94-103
    • /
    • 1988
  • Diamond anvil cell (DAC) interfaced with a YAG laser heating system has been used to study the phase transformations on perovskite structured titanates ($BaTiO_3$, and $PbTiO_3$) and to synthesize the silicate perovskite phase from the orthopyroxenes of $MgSiO_3$ and $(Mg_{0.87},\;Fe_{0.13})SiO_3$. $BaTiO_3$ and $PbTiO_3$ transform from tetragonal phase to cubic at the pressures of approximately 2.6 GPa and 4.0 GPa at room temperature, respectively. Cubic phases of the both show wide range of stability in the extended in-situ high pressures and high temperature regions. Starting orthoenstatite of $MgSiO_3$ has yielded the perovskite phase as the major structure with ilmenite, gamma-spinel, betta-spinel and stishovite phases at ~38 GPa and ${\sim}1,000^{\circ}C$. $(Mg_{0.87},\;Fe_{0.13})SiO_3$ has shown the perovskite as the major phase with betta-spinel, stishovite and enstatite phases at ~35 GPa and ${\sim}1,000^{\circ}C$. The ilmenite phase does not occur at this condition.

  • PDF

Synthesis of Multi-component Olivine by a Novel Mixed Transition Metal Oxalate Coprecipitation Method and Electrochemical Characterization

  • Park, Yeong-Uk;Kim, Jong-Sun;Gwon, Hyeok-Jo;Seo, Dong-Hwa;Kim, Seong-Uk;Hong, Ji-Hyeon;Gang, Gi-Seok
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.37.1-37.1
    • /
    • 2010
  • The multi-component olivine cathode material, $LiMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$, was prepared via a novel coprecipitation method of the mixed transition metal oxalate, $Mn_{1/3}Fe_{1/3}Co_{1/3}(C_2O_4){\cdot}2H_2O$. The stoichiometric ratio and distribution of transition metals in the oxalate, therefore, in the olivine product, was affected sensitively by the environments in the coprecipitation process, while they are the important factors in determining the electrochemical property of electrode materials with multiple transition metals. The effect of the pH, atmosphere, temperature, and aging time was investigated thoroughly with respect to the atomic ratio of transition metals, phase purity, and morphology of the mixed transition metal oxalate. The electrochemical activity of each transition metal in the olivine synthesized through this method clearly was enhanced as indicated in the cyclic voltammetry (CV) and galvanostatic charge/discharge measurement. Three distinctive contributions from Mn, Fe, and Co redox couples were detected reversibly in multiple charge and discharge processes. The first discharge capacity at the C/5 rate was $140.5\;mAh\;g^{-1}$ with good cycle retention. The rate capability test showed that the high capacity still is retained even at the 4C and 6C rates with 102 and $81\;mAh\;g^{-1}$, respectively.

  • PDF

The Crytal-Phase Transition of $Y_xFe_{2-x}O_3(x=0.82)$ ($Y_xFe_{2-x}O_3(x=0.82)$의 결정상 변환)

  • Kim, Jeong-Gi;Kim, Yeong-Jin
    • Korean Journal of Materials Research
    • /
    • v.6 no.3
    • /
    • pp.305-308
    • /
    • 1996
  • YxFe2-xO3(x=0.82)의 결정상 변환을 상온에서의 x선회절과 온도구간 80-541K에서의 Mossbauer 분광 방법에 의해서 연구하였다. Xtjs 회절선은 시료가 orthorhombic 결정상과 garnet 결정상이 공존하고 있으며, 공존비는 실험오차 범위내에서 garnet 구조가 orthorhombic 구조보다 우세함을 보인다. 공존상중에서 garnet 구조의 자기상 변환온도는 536$\pm$5 K로 결정하였다. Debye 모형을 이용한 Mossbauer 스펙트럼의 recoil-free fration 분석결과는 garnet 결정상내의 d자리나 a자리에 vacancy의 존재 가능성을 시사한다. 부가적으로 시료가 포함하는 각 결정상의 Debye 특성온도를 결정하였다.

  • PDF

Change of Electrochemical Characteristics Due to the Fe Doping in Lithium Manganese Oxide Electrode

  • Ju Jeh Beck;Kang Tae Young;Cho Sung Jin;Sohn Tae Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.3
    • /
    • pp.131-137
    • /
    • 2004
  • Sol-gel method which provides better electrochemical and physiochemical properties compared to the solid-state method was used to synthesize the material of $LiFe_yMn_{2-y}O_4$. Fe was substituted to increase the structural stability so that the effects of the substitution amount and sintering temperature were analyzed. XRD was used for the structural analysis of produced material, which in turn, showed the same cubic spinel structure as $LiMn_2O_4$ despite the substitution of $Fe^{3+}$. During the synthesis of $LiFe_yMn_{2-y}O_4$, as the sintering temperature and the doping amount of Fe(y=0.05, 0.1, 0.2)were increased, grain growth proceeded which in turn, showed a high crystalline and a large grain size, certain morphology with narrow specific surface area and large pore volume distribution was observed. In order to examine the ability for the practical use of the battery, charge-discharge tests were undertaken. When the substitution amount of $Fe^{3+}\;into\;LiMn_2O_4$ increased, the initial discharge capacity showed a tendency to decrease within the region of $3.0\~4.2V$ but when charge-discharge processes were repeated, other capacity maintenance properties turned out to be outstanding. In addition, when the sintering temperature was $800\~850^{\circ}C$, the initial capacity was small but showed very stable cycle performance. According to EVS(electrochemical voltage spectroscopy) test, $LiFe_yMn_{2-y}O_4(y=0,\;0.05,\;0.1,\;0.2)$ showed two plateau region and the typical peaks of manganese spinel structure when the substitution amount of $Fe^{3+}$ increased, the peak value at about 4.15V during the charge-discharge process showed a tendency to decrease. From the previous results, the local distortion due to the biphase within the region near 4.15V during the lithium extraction gave a phase transition to a more suitable single phase. When the transition was derived, the discharge capacity decreased. However the cycle performance showed an outstanding result.

Magnetic and Temperature-Sensitive Composite Polymer Particles and Adsorption Behavior of Emulsifiers and Trypsin

  • Ahmad, Hasan;Rahman, M.Abdur;Miah, M.A. Jalil;Tauer, Klaus
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.637-643
    • /
    • 2008
  • A combination of magnetic and temperature-responsive properties in the same polymer composites is expected to increase their potential applications in the biomedical field. Accordingly, micron-sized magnetite/polystyrene/poly(2-dimethylaminoethyl methacrylate-ethyleneglycol dimethacrylate), which are abbreviated as $Fe_3O_4$/PS/P (DM-EGDM) composite polymer particles, were prepared by the seeded copolymerization of DM and EGDM in the presence of magnetite/polystyrene ($Fe_3O_4$/PS) particles. $Fe_3O_4$/PS/P(DM-EGDM) composite particles with magnetic properties showed a temperature-sensitive phase transition at approximately $31^{\circ}C$. The adsorption behavior of the low molecular weight emulsifiers and trypsin (TR) as biomolecules were examined on $Fe_3O_4$/PS/P(DM-EGDM) composite polymer particles at different temperatures. The native conformation of TR was followed by measuring the specific activity under various adsorption conditions. The activity of the adsorbed TR on composite polymer particles was higher than those of the tree TR and TR adsorbed on $Fe_3O_4$/PS particles.

Magnetic Properties of Transition Metal-implanted ZnO Nanotips Grown on Sapphire and Quartz

  • Raley, Jeremy A.;Yeo, Yung-Kee;Hengehold, Robert L.;Ryu, Mee-Yi;Lu, Yicheng;Wu, Pan
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.19-22
    • /
    • 2008
  • ZnO nanotips, grown on c-$Al_2O_3$ and quartz, were implanted variously with 200 keV Fe or Mn ions to a dose level of $5{\times}10^{16}cm^{-2}$. The magnetic properties of these samples were measured using a superconducting quantum interference device (SQUID) magnetometer. Fe-implanted ZnO nanotips grown on c-$Al_2O_3$ showed a coercive field width of 209 Oe and a remanent field of 12% of the saturation magnetization ($2.3{\times}10^{-5}emu$) at 300K for a sample annealed at $700^{\circ}C$ for 20 minutes. The field-cooled and the zero-field-cooled magnetization measurements also showed evidence of ferromagnetism in this sample with an estimated Curie temperature of around 350 K. The Mn-implanted ZnO nanotips grown on c-$Al_2O_3$ showed superparamagnetism resulting from the dominance of a spin-glass phase. The ZnO nanotips grown on quartz and implanted with Fe or Mn showed signs of ferromagnetism, but neither was consistent.

Effects of Bi(Mg1/2Sn1/2)O3 Modification on the Dielectric and Piezoelectric Properties of Bi1/2(Na0.8K0.2)1/2TiO3 Ceramics (Bi1/2(Na0.8K0.2)1/2TiO3 세라믹스의 유전 및 압전 특성에 대한 Bi(Mg1/2Sn1/2)O3 변성 효과)

  • Pham, Ky Nam;Dinh, Thi Hinh;Lee, Hyun-Young;Kong, Young-Min;Lee, Jae-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.3
    • /
    • pp.266-271
    • /
    • 2012
  • The effect of $Bi(Mg_{1/2}Sn_{1/2})O_3$ (BMS) modification on the crystal structure, ferroelectric and piezoelectric properties of $Bi_{1/2}(Na_{0.8}K_{0.2})_{1/2}TiO_3$ (BNKT) ceramics has been investigated. The BMS-substitution induced a transition from a ferroelectric (FE) tetragonal to a nonpolar pseudocubic phase, leading to degradations in the remnant polarization, coercive field, and piezoelectric coefficient $d_{33}$. However, the electric-field-induced strain was significantly enhanced by the BMS substitution-induced phase transition and reached a highest value of $S_{max}/E_{max}$ = 633 pm/V under an applied electric field of 6 kV/mm when the BMS content reached 6 mol%. The abnormal enhancement in strain was attributed to the field-induced transition of the pseudocubic symmetry to other asymmetrical structure, which was not clarified in this work.

The Piezoelectric and Dielectric Properties of PZT-PMFW Piezoelectric Ceramics (PZT-PMFW 압전 세라믹의 압전 및 유전 특성)

  • 이종섭;이문주;이용희;정수현;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.689-692
    • /
    • 2001
  • In this paper, the pizoelectric and dielectric properties of 0.95Pb(ZrxTil-x)O$_3$- 0.05Pb(Mn$\_$0.2/Fe$\_$0.4/W$\_$0.4/)O$_3$piezoelectric ceramics is investigated as a function of Zr/Ti mole ratio. Also, MPB(Morphotropic Phase Boundary) and optimal sintering temperature is studied using XRD and SEM. As a results, when Zr/Ti mole ratio is 52/48, electromechanical coupling factor, k$\_$p/, is 58[%], permittivity, $\varepsilon$$\^$T/$\_$33//$\varepsilon$0, is 1360 and piezoelectric strain constant, d$\_$33/ is 265[pC/N] and the piezoelectric and dielectric properties become maximum. Phase transition temperature of its ternary piezoelectric system is about 350[$^{\circ}C$]. From the XRD analysis, when Zr/Ti mole ratio is 52/48, tetragonal phase transits to rhombohedral phase. Also, From measuring results of the sintering density, when sintering temperature is 1050[$^{\circ}C$], sintering density become maximum and is about 7930[kg/㎥], and average grain size is about 2-3[$\mu\textrm{m}$].

  • PDF