• Title/Summary/Keyword: Phase potential

Search Result 1,934, Processing Time 0.027 seconds

Correlation between Structures and Magnetism in Iron: Ferromagnetism and Antiferromagnetism

  • Lee, Dong-Kook;Hong, Soon-Cheol
    • Journal of Magnetics
    • /
    • v.12 no.2
    • /
    • pp.68-71
    • /
    • 2007
  • Even a pure bulk Fe has a complicated magnetic phase and its magnetism is still needed to be clarified. In this study we investigated the magnetism of bcc and fcc bulk Fe with total energy calculations as functions of atomic volume. The full-potential linearized augmented plane wave method was adopted within a generalized gradient approximation. The ground state of bulk Fe is confirmed to be of ferromagnetic (FM) bcc. For fcc structured Fe an antiferromagnetic (AFM) state is more stable compared to FM states which exist as low spin and high spin states. The stable AFM states were found to accompany a tetragonal distortion, while the FM states remained in a cubic symmetry. At an expanded lattice constant a high spin FM state was calculated to be able to be stabilized with significant enhanced magnetic moment compared to the value of the ground state, bcc FM.

Qualitative Analysis of Bleached Holographic Diffraction Grating (홀로그래피 위상형 회절격자의 정성적 해석)

  • Nam Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.3 no.3
    • /
    • pp.148-154
    • /
    • 1992
  • With nonhardening fixer, dichromated bleacher and alcohol drying, the diffraction efficiency of over 71o/c has been achie'{ed for holographic phase gratings in silver halide emulsion. The swollen emulsion of Agfa 8E75 HD film is identified by scanning electron microscope (SEM) after chemical processing. Dichromated bleacher and rapid dehydration using alcohol drying make a strong modulation so that diffraction efficiency is. increased over 20%. The principal characteristic parameters in coupled wave theory are investigated and new modified parameter values are presented by computer simulation. Controlling the emulsion thickness has an important role as a potential source for high diffraction efficiency.ciency.

  • PDF

A MODIFIED PREY-PREDATOR MODEL WITH COUPLED RATES OF CHANGE

  • HAN, HYEJI;KIM, GWANGIL;OH, SEOYOUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.4
    • /
    • pp.312-326
    • /
    • 2021
  • The prey-predator model is one of the most influential mathematical models in ecology and evolutionary biology. In this study, we considered a modified prey-predator model, which describes the rate of change for each species. The effects of modifications to the classical prey-predator model are investigated here. The conditions required for the existence of the first integral and the stability of the fixed points are studied. In particular, it is shown that the first integral exists only for a subset of the model parameters, and the phase portraits around the fixed points exhibit physically relevant phenomena over a wide range of the parameter space. The results show that adding coupling terms to the classical model widely expands the dynamics with great potential for applicability in real-world phenomena.

Flavonoids: Broad Spectrum Agents on Chronic Inflammation

  • Lim, Hyun;Heo, Moon Young;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.241-253
    • /
    • 2019
  • Flavonoids are major plant constituents with numerous biological/pharmacological actions both in vitro and in vivo. Of these actions, their anti-inflammatory action is prominent. They can regulate transcription of many proinflammatory genes such as cyclooxygenase-2/inducible nitric oxide synthase and many cytokines/chemokines. Recent studies have demonstrated that certain flavonoid derivatives can affect pathways of inflammasome activation and autophagy. Certain flavonoids can also accelerate the resolution phase of inflammation, leading to avoiding chronic inflammatory stimuli. All these pharmacological actions with newly emerging activities render flavonoids to be potential therapeutics for chronic inflammatory disorders including arthritic inflammation, meta-inflammation, and inflammaging. Recent findings of flavonoids are summarized and future perspectives are presented in this review.

Neutral-point Voltage Balancing Strategy for Three-level Converter based on Disassembly of Zero Level

  • Wang, Chenchen;Li, Zhitong;Xin, Hongliang
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.79-88
    • /
    • 2019
  • The neutral-point (NP) voltage of three-phase three-level NP-clamped converters is needed for balance. To maintain NP potential and suppress ripple, a novel NP voltage balancing strategy is proposed in this work. The mechanism of NP voltage variation is studied first. Then, the relationship between the disassembly of zero level (O level) and NP current is studied comprehensively. On these bases, two methods for selecting one of three output phases for the disassembly of its O level are presented. Finally, simulation and experimental results verify the validity and practicability of the proposed algorithms.

Mechanistic ligand-receptor interaction model: operational model of agonism

  • Kim, Hyungsub;Lim, Hyeong-Seok
    • Translational and Clinical Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.115-117
    • /
    • 2018
  • This tutorial explains the basic principles of mechanistic ligand-receptor interaction model, which is an operational model of agonism. A growing number of agonist drugs, especially immune oncology drugs, is currently being developed. In this tutorial, time-dependent ordinary differential equation for simple $E_{max}$ operational model of agonism was derived step by step. The differential equation could be applied in a pharmacodynamic modeling software, such as NONMEM, for use in non-steady state experiments, in which experimental data are generated while the interaction between ligand and receptor changes over time. Making the most of the non-steady state experimental data would simplify the experimental processes, and furthermore allow us to identify more detailed kinetics of a potential drug. The operational model of agonism could be useful to predict the optimal dose for agonistic drugs from in vitro and in vivo animal pharmacology experiments at the very early phase of drug development.

Temperature Dependence of the Rate Constants of the VV Energy Exchange for N$_2$(v=1)+O$_2$(v=0)$\rightarrow$N$_2$(v=0)+O$_2$(v=1)

  • Ree, Jong-Baik;Chung, Keun-Ho;Kim, Hae-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.241-245
    • /
    • 1986
  • The vibration-vibration energy exchange of $N_2(v=1)+O_2(v=0){\to}N_2(v=0)+O_2(v=1)$ has been investigated, in particular, at low temperatures. The energy exchange rate constants are calculated by use of the solution of the time-dependent Schrodinger equation with the interaction potential of the colliding molecule as a perturbation term. The predicted rate constants are significantly agree with a experimental values in the range of 295∼$90^{\circ}K$. The consideration of the VV-VT coupling decreases the predicted pure VV energy exchange value by a factor of ∼2. When the collision frequency correction is introduced, the VV-VT rate constant is consistent with the observed value in the liquid phase. The consideration of the population of the rotational energy level increases the VV-VT value significantly.

High throughput approaches to predicting drug absorption potential using the immobilized artificial membrane phosphatidylcholine column and molar volume

  • Yoon, Chi-Ho;Shin, Beom-Soo;Chang, Hyun-Sook;Yoo, Sun-Dong
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.239.2-239.2
    • /
    • 2003
  • The purpose of this study was to evaluate the predictability of the fraction of drug absorbed in humans using the immobilized artificial membrane phosphatidylcholine column (IAMPC) under optimized conditions in comparison with a conventional IAMPC method. Twenty commercial drugs, both acidic and basic in nature, were used in the study, Drugs were dissolved in acetonitrile:water (50:50, v/v) at a concentration of 100 mg/ml, and were injected on HPLC/UVD at a mobile phase (acetonitrile:DPBS = 10:90,v/v) with a flow rate of 0.5 ml/min equilibrated at 37$^{\circ}C$. (omitted)

  • PDF

Advanced Technologies and Mechanisms for Yeast Evolutionary Engineering

  • Ryu, Hong-Yeoul
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.423-428
    • /
    • 2020
  • In vitro evolution is a powerful technique for the engineering of yeast strains to study cellular mechanisms associated with evolutionary adaptation; strains with desirable traits for industrial processes can also be generated. There are two distinct approaches to generate evolved strains in vitro: the sequential transfer of cells in the stationary phase into fresh medium or the continuous growth of cells in a chemostat bioreactor via the constant supply of fresh medium. In culture, evolutionary forces drive diverse adaptive mechanisms within the cell to overcome environmental or intracellular stressors. Especially, this engineering strategy has expanded to the field of human cell lines; the understanding of such adaptive mechanisms provides promising targets for the treatment of human genetic diseases and cancer. Therefore, this technology has the potential to generate numerous industrial, medical, and academic applications.

Definition of Digital Engineering Models for DfMA of Prefabricated Bridges (프리팹 교량의 DfMA를 위한 디지털엔지니어링 모델 정의)

  • Duy-Cuong, Nguyen;Roh, Gi-Tae;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.12 no.1
    • /
    • pp.10-22
    • /
    • 2022
  • Prefabricated bridges require strict management of tolerance during fabrication and assembly. In this paper, digital engineering models for prefabricated bridge components such as deck, girder, pier, abutment are suggested to support information delivery through the life-cycle of the bridge. Rule-based modeling is used to define geometry of the members considering variable dimensions due to fabrication and assembly error. DfMA(design for manufacturing and assembly) provides the rules for ease of fabrication and assembly. The digital engineering model consists of geometry, constraints and corresponding parameters for each phase. Alignment and control points are defined to manage tolerances of the prefabricated bridge during fabrication and assembly. Quality control by digital measurement of dimensions was also considered in the model definition. A pilot bridge was defined virtually to validate the suggested digital engineering models. The digital engineering models for DfMA showed excellent potential to realize prefabricated bridges.