• Title/Summary/Keyword: Phase potential

Search Result 1,934, Processing Time 0.034 seconds

White mineral trioxide aggregate mixed with calcium chloride dihydrate: chemical analysis and biological properties

  • Ahmed, Hany Mohamed Aly;Luddin, Norhayati;Kannan, Thirumulu Ponnuraj;Mokhtar, Khairani Idah;Ahmad, Azlina
    • Restorative Dentistry and Endodontics
    • /
    • v.42 no.3
    • /
    • pp.176-187
    • /
    • 2017
  • Objectives: This study aimed to evaluate the chemical and biological properties of fast-set white mineral trioxide aggregate (FS WMTA), which was WMTA combined with calcium chloride dihydrate ($CaCl_2{\cdot}2H_2O$), compared to that of WMTA. Materials and Methods: Surface morphology, elemental, and phase analysis were examined using scanning electron microscope (SEM), energy dispersive X-ray microanalysis (EDX), and X-ray diffraction (XRD), respectively. The cytotoxicity and cell attachment properties were evaluated on human periodontal ligament fibroblasts (HPLFs) using methyl-thiazoldiphenyltetrazolium (MTT) assay and under SEM after 24 and 72 hours, respectively. Results: Results showed that the addition of $CaCl_2{\cdot}2H_2O$ to WMTA affected the surface morphology and chemical composition. Although FS WMTA exhibited a non-cytotoxic profile, the cell viability values of this combination were lesser than WMTA, and the difference was significant in 7 out of 10 concentrations at the 2 time intervals (p < 0.05). HPLFs adhered over the surface of WMTA and at the interface, after 24 hours of incubation. After 72 hours, there were increased numbers of HPLFs with prominent cytoplasmic processes. Similar findings were observed with FS WMTA, but the cells were not as confluent as with WMTA. Conclusions: The addition of $CaCl_2{\cdot}2H_2O$ to WMTA affected its chemical properties. The favorable biological profile of FS WMTA towards HPLFs may have a potential impact on its clinical application for repair of perforation defects.

Comparative Analysis of PD Characteristics Under SF6, g3 and Dry Air Insulation (SF6, g3 및 Dry Air 절연에서 PD 특성 비교 분석)

  • Shin, Han-sin;Kim, Nam-Hoon;Kim, Sung-Wook;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.490-494
    • /
    • 2020
  • Sulphur hexafluoride (SF6) is mostly used as a current-insulating medium in gas-insulated switchgears (GIS), owing to its excellent dielectric strength and arc-extinguishing performance. The global warming potential (GWP) of SF6, however, is 23,900 times that of CO2, and its life time in the atmosphere is 3,200 years. For these reasons, new eco-friendly gases to replace SF6 are required. In this study, the partial discharge (PD) characteristics of green gas for grid (g3) and dry air (N2/O2) were analyzed to compare with those of SF6. A PD electrode system was designed to simulate the protrusion defect in GISs and fabricated for experimentation. To compare the PD characteristics of each gas, the discharge inception voltage (DIV), discharge extinction voltage (DEV), discharge magnitude, discharge pulse number, and phase pattern were analyzed. Results from this study are expected to provide fundamental materials for the design of eco-friendly GISs.

Cathode Luminescence Characteristics of $ZnGa_2O_4$ Phosphors with the doped molar ratio of Mn (Mn 첨가에 따른 $ZnGa_2O_4$ 형광체의 발광특성)

  • Hong, Beom-Joo;Lee, Seung-Kyu;Kwon, Sang-Jik;Kim, Kyung-Hwan;Park, Yong-Seo;Cho, Hyung-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.463-465
    • /
    • 2005
  • The $ZnGa_2O_4$:Mn phosphor was synthesized through solid-state reactions at the various molar ratio of Mn from 0.002 % to 0.01 %. Structural and optical properties of the $ZnGa_2O_4$:Mn phosphor was investigated by using X-ray diffraction (XRD), and cathodoluminescence (CL) measurements. The XRD patterns show that the Mn-doped $ZnGa_2O_4$ has a (311) main peak and a spinel phase. Also the emission wavelength shifts from 420 to 510 nm in comparison with $ZnGa_2O_4$ when Mn is doped in $ZnGa_2O_4$. These results indicate that $ZnGa_2O_4$:Mn phosphors hold promise for potential applications in field-emission display devices with high brightness operating in green spectral regions.

  • PDF

Synthesis of Boron-doped Crystalline Si Nanoparticles Synthesized by Using Inductive Coupled Plasma and Double Tube Reactor (유도결합 플라즈마와 이중관 반응기를 이용하여 제조한 보론-도핑된 결정질 실리콘 나노입자의 합성)

  • Jung, Chun-Young;Koo, Jeong-Boon;Jang, Bo-Yun;Lee, Jin-Seok;Kim, Joon-Soo;Han, Moon-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.662-667
    • /
    • 2014
  • B-doped Si nanoparticles were synthesized by using inductive coupled plasma and specially designed double tube reactor, and their microstructures were investigated. 0~10 sccm of $B_2H_6$ gas was injected during the synthesis of Si nanoparticles from $SiH_4$ gas. Highly crystalline Si nanoparticles were synthesized, and their crystallinity did not change with increase of $B_2H_6$ flow rates. From SEM measurement, their particle sizes were approximately 30 nm regardless of $B_2H_6$ flow rates. From SIMS analysis, almost saturation of B in Si nanoparticles was detected only when 1 sccm of $B_2H_6$ was injected. When $B_2H_6$ flow rate exceeded 5 sccm, higher concentration of B than solubility limit was detected even if any secondary phase was not detected in XRD or HR-TEM results. Due to their high electronic conductivity, those heavily B-doped Si nanoparticles can be a potential candidate for an active material in Li-ion battery anode.

Assessment of Monitored Natural Attenuation as Remediation Approach for a BTEX Contaminated Site in Uiwang City (의왕시내 BTEX 오염 부지에서의 자연 정화법 이용 적합성 고찰)

  • 이민효;윤정기;박종환;이문순;강진규;이석영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.04a
    • /
    • pp.149-156
    • /
    • 1999
  • In the United States (U.S.), the monitored natural attenuation (MNA) approach has been used as an alternative remedial option for organic and inorganic compounds retained in soil and dissolved in groundwater. The U.S. Environmental Protection Agency (EPA) defines the MNA as“in-situ naturally-occurring processes include biodegradation, diffusion, dilution, sorption, volatilization, and/or chemical and biochemical stabilization of contaminants and reduce contaminant toxicity, mobility or volume to the levels that are protective of human health and the environment”. The Department of Soil Environment. National Institute Environmental Research (NIER) is in the process for demonstrating the MNA approach as a potential remedial option for the BTEX contaminated site in Uiwang City. The project is charactering the research site in terms of the nature and extend of contamination, biological degradation rate, and geochemical and hydrological properties. The microbial-degradation rate and effectiveness of nutrient and redox supplements will be determined through laboratory batch and column tests. The geochemical process will be monitored for determining the concentration changes of chemical species involved in the electron transfer processes that include methanogenesis, sulfate and iron reduction, denitrification, and aerobic respiration. Through field works, critical soil and hydrogeologic parameters will be acquired to simulate the effects of dispersion, advection, sorption, and biodegradation on the fate and transport of the dissolved-phase BTEX plume using Bioplume III model. The objectives of this multi-years research project are (1) to evaluate the MNA approach using the BTEX contaminated site in Uiwang City, (2) to establish a standard protocol for future application of the approach, (3) to investigate applicability of the passive approach as a secondary treatment remedy after active treatments. In this presentation, the overall picture and philosophy behind the MNA approach will be reviewed. Detailed discussions of the site characterization/monitoring plans and risk-based decision-making processes for the demonstration site will be included.

  • PDF

A review on thermohydraulic and mechanical-physical properties of SiC, FeCrAl and Ti3SiC2 for ATF cladding

  • Qiu, Bowen;Wang, Jun;Deng, Yangbin;Wang, Mingjun;Wu, Yingwei;Qiu, S.Z.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.1-13
    • /
    • 2020
  • At present, the Department of Energy (DOE) in Unite State are directing the efforts of developing accident tolerant fuel (ATF) technology. As the first barrier of nuclear fuel system, the material selection of fuel rod cladding for ATFs is a basic but very significant issue for the development of this concept. The advanced cladding is attractive for providing much stronger oxidation resistance and better in-pile behavior under sever accident conditions (such as SBO, LOCA) for giving more coping time and, of course, at least an equivalent performance under normal condition. In recent years, many researches on in-plie or out-pile physical properties of some suggested cladding materials have been conducted to solve this material selection problem. Base on published literatures, this paper introduced relevant research backgrounds, objectives, research institutions and their progresses on several main potential claddings include triplex SiC, FeCrAl and MAX phase material Ti3SiC2. The physical properties of these claddings for their application in ATF area are also reviewed in thermohydraulic and mechanical view for better understanding and simulating the behaviors of these new claddings. While most of important data are available from publications, there are still many relevant properties are lacking for the evaluations.

Cyclic Dipeptides from Bacillus vallismortis BS07 Require Key Components of Plant Immunity to Induce Disease Resistance in Arabidopsis against Pseudomonas Infection

  • Noh, Seong Woo;Seo, Rira;Park, Jung-Kwon;Manir, Md. Maniruzzaman;Park, Kyungseok;Sang, Mee Kyung;Moon, Surk-Sik;Jung, Ho Won
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.402-409
    • /
    • 2017
  • Cyclic dipeptides (CDPs) are one of the simplest compounds produced by living organisms. Plant-growth promoting rhizobacteria (PGPRs) also produce CDPs that can induce disease resistance. Bacillus vallismortis strain BS07 producing various CDPs has been evaluated as a potential biocontrol agent against multiple plant pathogens in chili pepper. However, plant signal pathway triggered by CDPs has not been fully elucidated yet. Here we introduce four CDPs, cyclo(Gly-L-Pro) previously identified from Aspergillus sp., and cyclo(L-Ala-L-Ile), cyclo(L-Ala-L-Leu), and cyclo(L-Leu-L-Pro) identified from B. vallismortis BS07, which induce disease resistance in Arabidopsis against Pseudomonas syringae infection. The CDPs do not directly inhibit fungal and oomycete growth in vitro. These CDPs require PHYTOALEXIN DEFICIENT4, SALICYLIC ACID INDUCTION DEFICIENT2, and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 important for salicylic acid-dependent defense to induce resistance. On the other hand, regulators involved in jasmonate-dependent event, such as ETHYLENE RECEPTOR1, JASMONATE RESPONSE1, and JASMONATE INSENSITIVE1, are necessary to the CDP-induced resistance. Furthermore, treatment of these CDPs primes Arabidopsis plants to rapidly express PATHOGENESIS-RELATED PROTEIN4 at early infection phase. Taken together, we propose that these CDPs from PGPR strains accelerate activation of jasmonate-related signaling pathway during infection.

Synthesis and Characterization of Large-Area and Highly Crystalline Molybdenum Disulphide Atomic Layer by Chemical Vapor Deposition

  • Park, Seung-Ho;Kim, Yooseok;Kim, Ji Sun;Lee, Su-Il;Cha, Myoung-Jun;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.287.1-287.1
    • /
    • 2013
  • The Isolation of few-layered transition metal dichalcogenides has mainly been performed by mechanical and chemical exfoliation with very low yields. in particular, the two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much interest due to its direct-gap property and potential application in optoelectronics and energy harvesting. However, the synthetic approach to obtain high-quality and large-area MoS2 atomic thin layers is still rare. In this account, a controlled thermal reductionsulfurization method is used to synthesize large-MoOx thin films are first deposited on Si/SiO2 substrates, which are then sulfurized (under vacuum) at high temperatures. Samples with different thicknesses have been analyzed by Raman spectroscopy and TEM, and their photoluminescence properties have been evaluated. We demonstrated the presence of single-, bi-, and few-layered MoS2 on as-grown samples. It is well known that the electronic structure of these materials is very sensitive to the number of layer, ranging from indirect band gap semiconductor in the bulk phase to direct band gap semiconductor in monolayers. This synthetic approach is simple, scalable, and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS2 films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.

  • PDF

The Characterization of V Based Self-Forming Barriers on Low-k Samples with or Without UV Curing Treatment

  • Park, Jae-Hyeong;Han, Dong-Seok;Gang, Yu-Jin;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.214.2-214.2
    • /
    • 2013
  • Device performance for the 45 and 32 nm node CMOS technology requires the integration of ultralow-k materials. To lower the dielectric constant for PECVD and spin-on materials, partial replacement of the solid network with air (k=1.01) appears to be more intuitive and direct option. This can be achieved introducting of second "labile" phase during depositoin that is removed during a subsequent UV curing and annealing step. Besides, with shrinking line dimensions the resistivity of barrier films cannot meet the International Technology Roadmap for Semiconductors (ITRS) requirements. To solve this issue self-forming diffusion barriers have drawn attention for great potential technique in meeting all ITRS requirments. In this present work, we report a Cu-V alloy as a materials for the self-forming barrier process. And we investigated diffusion barrier properties of self-formed layer on low-k dielectrics with or without UV curing treatment. Cu alloy films were directly deposited onto low-k dielectrics by co-sputtering, followed by annealing at various temperatures. X-ray diffraction revealed Cu (111), Cu (200) and Cu (220) peaks for both of Cu alloys. The self-formed layers were investigated by transmission electron microscopy. In order to compare barrier properties between V-based interlayer on low-k dielectric with UV curing and interlayer on low-k dielectric without UV curing, thermal stability was measured with various heat treatment temperature. X-ray photoelectron spectroscopy analysis showed that chemical compositions of self-formed layer. The compositions of the V based self-formed barriers after annealing were strongly dominated by the O concentration in the dielectric layers.

  • PDF

Oxidation Behavior of Al-25Ti-8Mn Intermetallic Compound Fabricated by Mechanical Alloying and Spark Plasma Sintering (기계적 합금화법과 방전 플라즈마 소결법으로 제조된 Al-25Ti-8Mn 금속간 화합물의 산화 거동)

  • Choi J. W.;Kim K. H.;Hwang G. H.;Hong S. J.;Kang S. G.
    • Korean Journal of Materials Research
    • /
    • v.15 no.7
    • /
    • pp.439-443
    • /
    • 2005
  • The oxidation behavior and the thermal stability of nanocrystalline Al-25Ti-8Mn intermetallic compound were investigated. $Al_3Ti$ intermetallic compound, which has a potential for high temperature structural material, was fabricated by mechanical alloying(MA) with $8at.\%$ Mn to enhance the thermal stability and ductility. And Al-25Ti-8Mn intermetallic compound was sintered by spark plasma sintering(SPS) at $700^{\circ}C$. After sintering process, cubic $Ll_2$ structure was maintained without phase transformation and the grain size was about 50nm. To investigate the oxidation behavior of the specimens, thermal gravimetric analysis(TGA) was performed at 700, 800, 900, and $1000^{\circ}C$ for 24 h in $O_2$. As the temperature increased from $700^{\circ}C\;to\;900^{\circ}C$ the weight gain of specimens increased. However at $1000^{\circ}C$, unlike the oxidation behavior of $700^{\circ}C\;to\;900^{\circ}C$, the weight gain of specimen decreased drastically and the transition from linear rate region to parabolic rate region occurred rapidly due to the dense $\alpha-Al_2O_3$.