DOI QR코드

DOI QR Code

Synthesis of Boron-doped Crystalline Si Nanoparticles Synthesized by Using Inductive Coupled Plasma and Double Tube Reactor

유도결합 플라즈마와 이중관 반응기를 이용하여 제조한 보론-도핑된 결정질 실리콘 나노입자의 합성

  • 정천영 (한국에너지기술연구원 창의소재연구실) ;
  • 구정분 (한국에너지기술연구원 창의소재연구실) ;
  • 장보윤 (한국에너지기술연구원 창의소재연구실) ;
  • 이진석 (한국에너지기술연구원 창의소재연구실) ;
  • 김준수 (한국에너지기술연구원 창의소재연구실) ;
  • 한문희 (충남대학교 에너지과학기술대학원 신에너지소재공학과)
  • Received : 2014.08.04
  • Accepted : 2014.09.22
  • Published : 2014.10.01

Abstract

B-doped Si nanoparticles were synthesized by using inductive coupled plasma and specially designed double tube reactor, and their microstructures were investigated. 0~10 sccm of $B_2H_6$ gas was injected during the synthesis of Si nanoparticles from $SiH_4$ gas. Highly crystalline Si nanoparticles were synthesized, and their crystallinity did not change with increase of $B_2H_6$ flow rates. From SEM measurement, their particle sizes were approximately 30 nm regardless of $B_2H_6$ flow rates. From SIMS analysis, almost saturation of B in Si nanoparticles was detected only when 1 sccm of $B_2H_6$ was injected. When $B_2H_6$ flow rate exceeded 5 sccm, higher concentration of B than solubility limit was detected even if any secondary phase was not detected in XRD or HR-TEM results. Due to their high electronic conductivity, those heavily B-doped Si nanoparticles can be a potential candidate for an active material in Li-ion battery anode.

Keywords

References

  1. T. Trindade, Chem. Mater., 13, 3843 (2001). https://doi.org/10.1021/cm000843p
  2. H. Weller, Curr. Opin. Colloid Interface Sci., 3, 194 (1998). https://doi.org/10.1016/S1359-0294(98)80013-7
  3. J. R. Heath and J. J. Shiang, Chemical Society Reviews, 27, 65 (1998). https://doi.org/10.1039/a827065z
  4. S. Oda, Adv. Coll. Int. Sci., 31, 71 (1997).
  5. D. K. Ferry, H. L. Grubin, C. Jacoboni, and A. P. Jauho, Quantum Transport in Ultrasmall Devices, (Plenum Press, New York, 1995).
  6. R. W. Collins, C. C. Tsai, M. Hirose, F. Koch, and L. Brus, Mater. Res. Soc. Symp. Proc., 358 (1995).
  7. M. J. Kelly, Low-Dimensional Semiconductors, (Clarendon Press, Oxford, 1995).
  8. L. Mangolini, D. Jurbergs, E. Rogojina, and U. Kortshagen, J. Lumin., 121, 327 (2006). https://doi.org/10.1016/j.jlumin.2006.08.068
  9. A. Gupta, C. Schulz, and H. Wiggers, J. Opt. Adv. Materials, 12, 518 (2010).
  10. B. Y. Jang, J. C. Lee, and C. H. Ko, J. Korean Phys. Soc., 57, 1029 (2010). https://doi.org/10.3938/jkps.57.1029
  11. J. P. Conde, P. Alpuim, and V. Chu, in Mater. Res. Soc. Symp., Proc. 715 (eds. J. R. Abelson, J. B. Boyce, J. D. Cohen, H. Matsumura, and J. Robertson) (Materials Research Society (Pittsburgh, Pennsylvania, 2002), p. A3.1.1-A3.1.6.
  12. F. S. Feng, C. W. Liang, and D. Tseng, J. Electrochem. Soc., 141, 1040 (1994). https://doi.org/10.1149/1.2054838
  13. C. Song, J. Xu, G. Chen, H. Sun, Y. Liu, W. Li, L. Xu, Z. Ma, and K. Chen, Appl. Surf. Sci., 257, 1337 (2010). https://doi.org/10.1016/j.apsusc.2010.08.065
  14. A. Gupta, C. Schulz, and H. Wiggers, J. Opt. Adv. Materials, 12, 518 (2010).
  15. K. Murakami, International Symposium on Manipulation of Atoms and Molecules by Electronic Excitations (ISMAMEE, 2002).
  16. M. R. Scriba, D. T. Britton, and M. Harting, Thin Solid Films, 519, 4491 (2011). https://doi.org/10.1016/j.tsf.2011.01.330
  17. P. Ling, L. Kok-Keong, J. M. Redwing, and C. D. Elizabeth, J. Crystal Growth, 277, 428 (2005). https://doi.org/10.1016/j.jcrysgro.2005.01.091
  18. H. K. Lee, B. Y. Jang, C. H. Ko, J. C. Lee, and Y. K. Park, J. Nanoscience and Nanotechnology, 11, 1 (2011). https://doi.org/10.1166/jnn.2011.3839
  19. R. Hull, Porperties of Crystalline Silicon, INSPEC, EMIS, 20, 620 (University of Virginia, USA, 1999).