• Title/Summary/Keyword: Phase potential

Search Result 1,936, Processing Time 0.031 seconds

An Overview of Self-Grown Nanostructured Electrode Materials in Electrochemical Supercapacitors

  • Shinde, Nanasaheb M.;Yun, Je Moon;Mane, Rajaram S.;Mathur, Sanjay;Kim, Kwang Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.407-418
    • /
    • 2018
  • Increasing demand for portable and wireless electronic devices with high power and energy densities has inspired global research to investigate, in lieu of scarce rare-earth and expensive ruthenium oxide-like materials, abundant, cheap, easily producible, and chemically stable electrode materials. Several potential electrode materials, including carbon-based materials, metal oxides, metal chalcogenides, layered metal double hydroxides, metal nitrides, metal phosphides, and metal chlorides with above requirements, have been effectively and efficiently applied in electrochemical supercapacitor energy storage devices. The synthesis of self-grown, or in-situ, nanostructured electrode materials using chemical processes is well-known, wherein the base material itself produces the required phase of the product with a unique morphology, high surface area, and moderate electrical conductivity. This comprehensive review provides in-depth information on the use of self-grown electrode materials of different morphologies in electrochemical supercapacitor applications. The present limitations and future prospects, from an industrial application perspectives, of self-grown electrode materials in enhancing energy storage capacity are briefly elaborated.

Atomistic simulation of structural and elastic modulus of ZnO nanowires and nanotubes (산화아연 나노선과 나노튜브의 구조 및 탄성계수에 관한 원자단위 연구)

  • Moon, W.H.;Choi, C.H.;Hwang, H.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.429-429
    • /
    • 2008
  • The structural stability and the elastic modulus of hexagonal ZnO nanowires and nanotubes are investigated using atomistic simulations based on the shell model. The ZnO nanowire with (10-10) facets is energetically more stable than that with (11-20). Our calculations indicate that the structural change of ZnO nanowires with (10-10) facets is sensitive to the diameter. With decreasing the diameter of ZnO nanowires, the unit-cell length is increased while the bond-length is reduced due to the change of surface atoms. Unlike the conventional layered nanotubes, the energetic stability of single crystalline ZnO nanotubes is related to the wall thickness. The potential energy of ZnO nanotubes with fixed outer and inner diameters decreases with increasing wall thickness while the nanotubes with same wall thickness are independent of the outer and inner diameters. The transformation of single crystalline ZnO nanotubes with double layer from wurtzite phase to graphitic suggests the possibility of wall-typed ZnO nanotubes. The size-dependent Young's modulus for ZnO nanowires and nanotubes is also calculated. The diameter and the wall thickness play a significant role in the Young's modulus of single crystalline ZnO nanowires and nanotubes, respectively.

  • PDF

Luminescence Characteristics of ZnGa2O4 Phosphors with the Doped Activator (활성제 첨가에 따른 ZnGa2O4 형광체의 발광특성)

  • Hong Beom-Joo;Choi Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.5
    • /
    • pp.432-436
    • /
    • 2006
  • The $ZnGa_2O_4$ and Mn, Cr-doped $ZnGa_2O_4$ Phosphors were synthesized through conventional solid state reactions. The XRD patterns show that the $ZnGa_2O_4$ has a (3 1 1) main peak and a spinel phase. The emission wavelength of $ZnGa_2O_4$ showed main peak of 420 nm and maximum intensity at the sintering temperature of $1100^{\circ}C$. In the crystalline $ZnGa_2O_4$, the Mn shows green emission (510 nm, $^4T_1-^6A_1$) with a quenching concentration of 0.6 mol%, and the Cr shows red emission (705 nm, $^4T_2-^4A_2$) with a quenching concentration of 2 mol%. These results indicate that $ZnGa_2O_4$ Phosphors hold promise for potential applications in field emission display devices with high brightness operating in full color regions.

Anthocyanin Analysis of Pressure-extracted Korean Blueberry Juice and in vitro Anti-inflammatory in RAW267.4 Cell line (국산 블루베리 착즙액의 안토시아닌 분석 및 RAW267.4 세포주에서의 항염효과)

  • Choi, Moon-Hee;Jeon, Young-Jin;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.191-196
    • /
    • 2015
  • Blueberry juice possesses rich-procyanidins and - anthocyanidin, comprised a group of with numerous health benefits such as protection against coronary heart disease, detoxification, and obesity. Blueberry (Vaccinium virgatum) juice extracts were analyzed and separated by an HPLC method for the purpose of the separation and quantification in polyphenolic groups. In specific HPLC conditions, a binary mobile phase consisting of formic acid: water (10:90, v/v, solvent A) and formic acid: water: acetonitrile (10:60:30, v/v/v, solvent B) was utilized and it is detected at 546 nm wavelength. The phenolic contents of the extracts are determined using Folin-Ciocalteu phenol reagent. In order to test anti-inflammation activity assay, after producing nitric oxide (NO) in lipopolysaccharide activated RAW 264.7 cells, at concentration of $20-500{\mu}g/mL$ it reduced to NO production at a dose-dependent manner. Importantly, cytotoxicity assay with up to $500{\mu}g/mL$ of the extract from blueberry juice showed ~100% cell viability for RAW264.7 cell line. Therefore, Korean blueberry juice might have potential as anti-oxidant and antiinflammation agents.

Degradation of VOC by Photocatalysts and Dark Discharge Hybrid Systems (광촉매와 암방전(dark discharge) 복합 시스템을 이용한 VOC의 분해)

  • Jung, Jihoon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.852-857
    • /
    • 2008
  • The immobilization technique is important to extend the application field of a photocatalyst. Titanium surface was changed into a $TiO_2$ thin film by the anodizing process. The anodized $TiO_2$ had photocatalytic activity, and showed sponge like shape. The photocatalytic degradation of gas phase acetaldehyde and VOCs by anodized titania has been studied in various initial concentrations, humidity and discharge potentials. The reactivity of anodized titania was increased with relative humidity, but excessive humidity led to a decrease of the reaction rate. The electric dark discharge that was combined with photocatalytic reaction enhanced the decomposition rate of the organic compounds. But excessively applied voltage caused corona discharge, which decreased the reaction rate. Optimum relative humidity was 40% and discharge potential was 5 kV under dark discharge region in photocatalytic reaction.

Relationship between Olfactory Preferences and Olfactory Event-Related Potentials

  • Lee, Gil-Hyun;Yoon, Hae-Gyung;Kim, Young-Sam;Hyun, Kyung-Yae
    • Biomedical Science Letters
    • /
    • v.26 no.1
    • /
    • pp.14-21
    • /
    • 2020
  • Quantitative evaluation of the sense of smell is done by the olfactory event-related potential (OERP) test. OERP consists of N1, P1, N2, P2, and P3, of which N1 and P1 latency are known to be affected by the concentration of odor stimuli associated with the pre-sensory phase and P2 and P3 are the stages at which odors are perceived and are known to change by subjective evaluation of the stimulus. The purpose of this study was to clarify the correlation between the expression of OERP and the subjective evaluation of the object on the fragrance stimulus using various fragrances. Therefore, the study examined the relative waveform power ratio, preference for each scent stimulus, and finally the amplitude and latency change of the components of OERP, N1 and P2. In contrast, it was found that the late P2 response waveform was an effective aroma stimulus recognition waveform in OERP compared to the initial response waveforms.

The coupling effect of drying shrinkage and moisture diffusion in concrete

  • Suwito, A.;Ababneh, Ayman;Xi, Yunping;Willam, Kaspar
    • Computers and Concrete
    • /
    • v.3 no.2_3
    • /
    • pp.103-122
    • /
    • 2006
  • Drying shrinkage of concrete occurs due to the loss of moisture and thus, it is controlled by moisture diffusion process. On the other hand, the shrinkage causes cracking of concrete and affects its moisture diffusion properties. Therefore, moisture diffusion and drying shrinkage are two coupled processes and their interactive effect is important for the durability of concrete structures. In this paper, the two material parameters in the moisture diffusion equation, i.e., the moisture capacity and humidity diffusivity, are modified by two different methods to include the effect of drying shrinkage on the moisture diffusion. The effect of drying shrinkage on the humidity diffusivity is introduced by the scalar damage parameter. The effect of drying shrinkage on the moisture capacity is evaluated by an analytical model based on non-equilibrium thermodynamics and minimum potential energy principle for a two-phase composite. The mechanical part of drying shrinkage is modeled as an elastoplastic damage problem. The coupled problem of moisture diffusion and drying shrinkage is solved using a finite element method. The present model can predict that the drying shrinkage accelerates the moisture diffusion in concrete, and in turn, the accelerated drying process increases the shrinkage strain. The coupling effects are demonstrated by a numerical example.

Antinociceptive and Anti-inflammatory Properties of Cinnamomum cassia Derived-cinnamaldehyde in Rodents (육계 유래 Cinnamaldehyde의 투여와 항염증 및 진통효과의 평가)

  • Je, Hyun-Dong
    • YAKHAK HOEJI
    • /
    • v.56 no.4
    • /
    • pp.236-239
    • /
    • 2012
  • The aim of present study was to investigate the possible influence and the related mechanism of Cinnamomum cassia derived-cinnamaldehyde on the inflammation or nociception. Cinnamomum cassia was referred to be treated for common cold or dyspepsia in the traditional medicine. However, there are no reports on the antinociceptive or anti-inflammatory properties of cinnamaldehyde, the primary ingredient of Cinnamomum cassia. We hypothesized that cinnamaldehyde would play a role in the modulation of inflammation or nociception evoked by carrageenan, acetic acid or heat. Male Institute of Cancer Research mice were used and the size of edema, frequency of writhing and latency of abnormal behaviors such as licking, flicking, shaking or jumping were measured and recorded. The present study was carried out to evaluate the antiinflammatory and antinociceptive effects of cinnamaldehyde. The administration of cinnamaldehyde (30 and 100 mg/kg) inhibited carrageenan-induced paw edema only at the final phase, suggesting the blockade of synthesis or release of prostaglandins. It also reduced the frequency of the acetic acid-induced writhing reflex in mice. In addition, the administration of cinnamaldehyde prolonged the latency for extraordinary reaction at the hot plate in mice. In conclusion, cinnamaldehyde has anti-inflammatory and analgesic properties and is a potential therapeutic for inflammation and nociception.

Sensor-less Speed Control of PMSM for Driving Oil-free Air Compressor (무급유식 공기압축기 구동을 위한 영구자석 동기 모터의 센서리스 속도제어)

  • Kin, Min Ho;Yang, Oh;Kim, Youn Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.45-50
    • /
    • 2015
  • This paper suggests the sensor-less speed control of PMSM (Permanent Magnet Synchronous Motor) without the position sensor of oil-free air compressor. It estimated d and q axis back electro motive force using Back-EMF (Electro motive Force) observer to control sensor-less speed of PMSM. Also it used the method that tracks the information of rotor position and speed using PLL (Phase Locked Loop) based on estimated d and q axis Back-EMF. The sensor-less speed control of PMSM for oil air compressor application is carried out with the introduced rotor position and speed tracking method. In this paper, the experimental characterization of the sensor-less drive is provided to verify the accuracy of the estimated position and the performance of sensor-less control is analyzed by results obtained from the experiment. Moreover, the potential of PMSM sensor-less drive in industrial application such as compressor drive is also examined.

Performance and Emission Studies in a DI Diesel Engine Fuelled with Diesel-Pyrolysis Oil Emulsion (디젤-열분해유 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구)

  • Lee, Seokhwan;Kim, Hoseung;Kim, Taeyoung;Woo, Sejong;Kang, Kernyong
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.55-63
    • /
    • 2014
  • Pyrolysis oil (PO), also known as Bio crude oil (BCO), has the potential to displace significant amounts of fuels that are currently derived from petroleum sources. PO has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of PO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the PO. One of the easiest way to adopt PO to diesel engine without modifications is emulsification of PO with the fuels that has higher cetane number. However, PO that has high amount of polar chemicals is immiscible with non polar hydrocarbons of diesel. Thus, to stabilize a homogeneous phase of diesel-PO blends, a proper surfactant should be used. In this study, a DI diesel engine operated with diesel and diesel-PO emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by diesel-PO emulsions were examined. Results showed that stable engine operation was possible with the emulsions and engine output power was comparable to diesel operation.