DOI QR코드

DOI QR Code

Relationship between Olfactory Preferences and Olfactory Event-Related Potentials

  • Lee, Gil-Hyun (Department of Clinical Laboratory Science, Dong-Seo University) ;
  • Yoon, Hae-Gyung (Division of Basic Sciences, Dong-eui University) ;
  • Kim, Young-Sam (Department of Art and Design, Dong-Eui University) ;
  • Hyun, Kyung-Yae (Department of Clinical Laboratory Science, Dong-Eui University)
  • Received : 2019.11.19
  • Accepted : 2020.03.17
  • Published : 2020.03.31

Abstract

Quantitative evaluation of the sense of smell is done by the olfactory event-related potential (OERP) test. OERP consists of N1, P1, N2, P2, and P3, of which N1 and P1 latency are known to be affected by the concentration of odor stimuli associated with the pre-sensory phase and P2 and P3 are the stages at which odors are perceived and are known to change by subjective evaluation of the stimulus. The purpose of this study was to clarify the correlation between the expression of OERP and the subjective evaluation of the object on the fragrance stimulus using various fragrances. Therefore, the study examined the relative waveform power ratio, preference for each scent stimulus, and finally the amplitude and latency change of the components of OERP, N1 and P2. In contrast, it was found that the late P2 response waveform was an effective aroma stimulus recognition waveform in OERP compared to the initial response waveforms.

Keywords

References

  1. Allison T, Goff W. Human cerebral evoked responses to odorous stimuli. Electroencephalography and Clinical Neurophysiology. 1967. 23: 558-560. https://doi.org/10.1016/0013-4694(67)90022-3
  2. Bensafi M, Pierson A, Rouby C, Farget V, Bertrand B, Vigouroux M, Jouvent R, Holley A. Modulation of visual event-related potentials by emotional olfactory stimuli. Neurophysiologie Clinique/Clinical Neurophysiology. 2002. 32: 335-342. https://doi.org/10.1016/S0987-7053(02)00337-4
  3. Brauchli P., Ruegg PB, Etzweiler F, Zeier H. Electrocortical and autonomic alteration by administration of a pleasant and an unpleasant odor. Chemical Senses. 1995. 20: 505-515. https://doi.org/10.1093/chemse/20.5.505
  4. Caminiti F, De Salvo S, De Cola MC, Russo M, Bramanti P, Marino S, Ciurleo R. Detection of olfactory dysfunction using olfactory event related potentials in young patients with multiple sclerosis. PLoS One. 2014. 9: e103151. https://doi.org/10.1371/journal.pone.0103151
  5. Castle P, Van Toller S, Milligan G. The effect of odour priming on cortical EEG and visual ERP responses. International Journal of Psychophysiology. 2000. 36: 123-131. https://doi.org/10.1016/S0167-8760(99)00106-3
  6. Chung HR, Lee JY, Kim DC, Hwang WI. Synergistic effect of Panax ginseng and Cinnamoum Blume mixture on the inhibition of cancer cell growth in vitro. Journal of Ginseng Research. 1999. 23: 99-104.
  7. Cook S, Kokmotou K, Soto V, Fallon N, Tyson-Carr J, Thomas A, Giesbrecht T, Field M, Stancak A. Pleasant and unpleasant odour-face combinations influence face and odour perception: an event-related potential study. Behavioural Brain Research. 2017. 333: 304-313. https://doi.org/10.1016/j.bbr.2017.07.010
  8. Cook S, Kokmotou K, Soto V, Wright H, Fallon N, Thomas A, Giesbrecht T, Field M, Stancak A. Simultaneous odour-face presentation strengthens hedonic evaluations and event-related potential responses influenced by unpleasant odour. Neuroscience Letters. 2018. 672: 22-27. https://doi.org/10.1016/j.neulet.2018.02.032
  9. Covington JW, Geisler MW, Polich J, Murphy C. Normal aging and odor intensity effects on the olfactory event-related potential. International Journal of Psychophysiology. 1999. 32: 205-214. https://doi.org/10.1016/S0167-8760(99)00012-4
  10. Croy I, Schulz M, Blumrich A, Hummel C, Gerber J, Hummel T. Human olfactory lateralization requires trigeminal activation. Neuroimage. 2014. 98: 289-295. https://doi.org/10.1016/j.neuroimage.2014.05.004
  11. Dember WN, Warm JS, Parasuraman R. Olfactory stimulation and sustained attention. Compendium of Olfactory Research. 1995. IA: 39-46.
  12. Doty RL, Shaman P, Kimmelman CP, Dann MS. University of Pennsylvania Smell Identification Test: a rapid quantitative olfactory function test for the clinic. The Laryngoscope. 1984. 94: 176-178. https://doi.org/10.1288/00005537-198402000-00004
  13. Evans WJ, Cui L, Starr A. Olfactory event-related potentials in normal human subjects: effects of age and gender. Electroencephalography and Clinical Neurophysiology. 1995. 95: 293-301. https://doi.org/10.1016/0013-4694(95)00055-4
  14. Firestein S. How the olfactory system makes sense of scents. Nature 2001. 413: 211. https://doi.org/10.1038/35093026
  15. Freeman WJ, Viana Di Prisco G. Relation of olfactory EEG to behavior: time series analysis. Behavioral Neuroscience. 1986. 100: 753. https://doi.org/10.1037/0735-7044.100.5.753
  16. Gottfried JA, O'Doherty J, Dolan RJ. Appetitive and Aversive Olfactory Learning in Humans Studied Using Event-Related Functional Magnetic Resonance Imaging. The Journal of Neuroscience. 2002. 22: 10829-10837. https://doi.org/10.1523/JNEUROSCI.22-24-10829.2002
  17. Hammond EJ, Uthman BM, Reid SA, Wilder B. Electrophysiological studies of cervical vagus nerve stimulation in humans: I. EEG effects. Epilepsia. 1992. 33: 1013-1020. https://doi.org/10.1111/j.1528-1157.1992.tb01752.x
  18. Han P, Schriever VA, Peters P, Olze H, Uecker FC, Hummel T. Influence of airflow rate and stimulus concentration on olfactory event-related potentials (OERP) in humans. Chemical Senses. 2017. 43: 89-96. https://doi.org/10.1093/chemse/bjx072
  19. Hawkes CH, Doty RL. The neurology of olfaction, Cambridge University Press. 2009.
  20. Homan RW, Herman J, Purdy P. Cerebral location of international 10-20 system electrode placement. Electroencephalography and Clinical Neurophysiology.1987. 66: 376-382. https://doi.org/10.1016/0013-4694(87)90206-9
  21. Hummel T, Sekinger B, Wolf SR, Pauli E, Kobal G. 'Sniffin'sticks': olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chemical Senses. 1997. 22: 39-52. https://doi.org/10.1093/chemse/22.1.39
  22. Invitto S, Grasso A. Chemosensory Perception: A Review on Electrophysiological Methods in "Cognitive Neuro-Olfactometry". Chemosensors. 2019. 7: 45. https://doi.org/10.3390/chemosensors7030045
  23. Ishimaru T, Miwa T, Shimada T, Furukawa M. Electrically stimulated olfactory evoked potential in olfactory disturbance. Annals of Otology, Rhinology & Laryngology. 2002. 111: 518-522. https://doi.org/10.1177/000348940211100607
  24. Kwon JS. Clinical Applications of Event-related Potentials. Sleep Medicine and Psychophysiology. 1994. 1: 36-46.
  25. Manley CH. Psychophysiological effect of odor. Critical Reviews in Food Science and Nutrition. 1993. 33: 57-62. https://doi.org/10.1080/10408399309527612
  26. Masago R, Shimomura Y, Iwanaga K, Katsuura T. The Effects of Hedonic Properties of Odors and Attentional Modulation on the Olfactory Event-Related Potentials. Journal of Physiological Anthropology and Applied Human Science. 2001. 20: 7-13. https://doi.org/10.2114/jpa.20.7
  27. Nejati H, Tsourides K, Pomponiu V, Ehrenberg EC, Cheung NM, Sinha P. Towards perception awareness: Perceptual event detection for brain computer interfaces. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE. 2015.
  28. Nuwer MR, Comi G, Emerson R, Fuglsang-Frederiksen A, Guerit JM, Hinrichs H, Ikeda A, Luccas FJC, Rappelsburger P. IFCN standards for digital recording of clinical EEG. Electroencephalography and Clinical Neurophysiology. 1998. 106: 259-261. https://doi.org/10.1016/S0013-4694(97)00106-5
  29. Pause BM, Sojka B, Krauel K, Ferstl R. The nature of the late positive complex within the olfactory event-related potential (OERP). Psychophysiology. 1996. 33: 376-384. https://doi.org/10.1111/j.1469-8986.1996.tb01062.x
  30. Sano K, Tsuda Y, Sugano H, Aou S, Hatanaka A. Concentration effects of green odor on event-related potential (P300) and pleasantness. Chemical Senses. 2002. 27: 225-230. https://doi.org/10.1093/chemse/27.3.225
  31. Sato M, Kodama N, Sasaki T, Ohta M. Olfactory evoked potentials: experimental and clinical studies. Journal of Neurosurgery. 1996. 85: 1122-1126. https://doi.org/10.3171/jns.1996.85.6.1122
  32. Tateyama T, Hummel T, Roscher S, Post H, Kobal G. Relation of olfactory event-related potentials to changes in stimulus concentration. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section. 1998. 108: 449-455. https://doi.org/10.1016/S0168-5597(98)00022-7
  33. Tonoike M, Maeda A, Kawai H, Kaetsu I. Measurement of olfactory event-related magnetic fields evoked by odorant pulses synchronized with respiration. Electroencephalography and Clinical Neurophysiology. Supplement. 1996. 47: 143.
  34. Vanderwolf C, Zibrowski EM. Pyriform cortex ${\beta}$-waves: odorspecific sensitization following repeated olfactory stimulation. Brain Research. 2001. 892: 301-308. https://doi.org/10.1016/S0006-8993(00)03263-7
  35. Wu CH, Lee PL, Shu CH, Yang CY, Lo MT, Chang CY, Hsieh JC. Empirical mode decomposition-based approach for intertrial analysis of olfactory event-related potential features. Chemosensory Perception. 2012. 5: 280-291. https://doi.org/10.1007/s12078-012-9134-8
  36. Yang KH, Lee JS, Huh NH, Choi SH, Park YM. Odorant Confusion Matrix Odor Identification Test Using Synthetic Odorants. Korean Journal of Otorhinolaryngology-Head and Neck Surgery. 2001. 44: 278-282.
  37. Zhao C, Zhao M, Liu J, Zheng C. Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator. Accident Analysis & Prevention. 2012. 45: 83-90. https://doi.org/10.1016/j.aap.2011.11.019