• Title/Summary/Keyword: Phase method

Search Result 13,711, Processing Time 0.034 seconds

Speed control of single-phase induction motor using phase control and integral cycle control (위상제어와 주기 제어를 이용한 단상유도기의 속도 제어)

  • Kim, Cherl-Jin;Lee, Kwan-Yong;Cho, Young-Rae;Choi, Chul-Young;Baek, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.190-192
    • /
    • 2003
  • Single phase induction motor is used widely in various electronic appliances by advantage that is simple structure and a low-cost. As high starting torque characteristic is mostly used capacitor run single phase induction motor. In this paper, it is applied that speed controller of Capacitor run single phase induction motor of digital way used general microprocessor, and phase control method used average voltage. Torque get non-linearity to domain of low speed. Unstable domain of low speed is applied of integral cycle control. so it is wide that Speed control domain. Also, PID controller is used to improve characteristic of fast response. The validity of proposed method is verified from simulation and experiment result

  • PDF

A decoupling FEM for simulating near-field wave motion in two-phase media

  • Chen, S.L.;Liao, Z.P.;Chen, J.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.2
    • /
    • pp.181-200
    • /
    • 2007
  • A decoupling technique for simulating near-field wave motions in two-phase media is introduced in this paper. First, an equivalent but direct weighted residual method is presented in this paper to solve boundary value problems more explicitly. We applied the Green's theorem for integration by parts on the equivalent integral statement of the field governing equations and then introduced the Neumann conditions directly. Using this method and considering the precision requirement in wave motion simulation, a lumped-mass FEM for two-phase media with clear physical concepts and convenient implementation is derived. Then, considering the innate attenuation character of the wave in two-phase media, an attenuation parameter is introduced into Liao's Multi-Transmitting Formula (MTF) to simulate the attenuating outgoing wave in two-phase media. At last, two numerical experiments are presented and the numerical results are compared with the analytical ones demonstrating that the lumped-mass FEM and the generalized MTF introduced in this paper have good precision.

New single-phase Phase-Locked Loop system composed of Adaptive Linear Combiner (Adaptive Linear Combner로 구성된 새로운 단상 Phase Locked Loop 시스템)

  • Bae B. Y.;Lee B. K.;Baek S. T.;Han B. M.;Kim H. W.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.583-586
    • /
    • 2004
  • A typical method to control the single-phase power converter system is to utilize the zero-crossing PLL. However, this method is vulnerable to the voltage disturbance and affects the performance of controller This paper proposes a new single-phase PLL system that is composed of the adaptive linear combiner and the PI control. The operational principle was analyzed through theoretical approach and the performance was verified through simulations with MATLAB. The proposed PLL system shows rapidness and robustness in control under the voltage disturbances such as the sag, harmonics, and phase jump.

  • PDF

Steady-State Characteristic Analysis of Single-Phase Line-Start Permanent Magnet Synchronous Motor (단상 영구자석형 유도동기기의 정상상태 특성해석)

  • Kang, Gyu-Hong;Nam, Hyuk;Hong, Jung-Pyo
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.2
    • /
    • pp.53-60
    • /
    • 2003
  • This paper deals with steady-state analysis of a single-phase line-start permanent magnet synchronous motor. In order to analyze the steady-state characteristics, the asymmetric single-phase line-start synchronous motor is converted to the symmetric two-phase synchronous motor, that is, the asymmetric magnetic field is separated from the positive and the negative symmetric components using symmetrical-component theory. The analysis method of the synchronous motor on the d-q axis coordinates is used for the positive component and the equivalent circuit of the induction motor is applied for the negative component analysis. Moreover, d-q axis inductance considering current phase angle is applied to positive component analysis for precise characteristic analysis. In order to validate the proposed analysis method, the analysis results are compared with the experimental results.

A Roll Rate Estimation Method Using GNSS Signals for Spinning Vehicles (GNSS 신호를 이용한 회전체의 롤 회전 속도 추정 기법)

  • Kim, Jeong-Won;Cho, Jong-Chul;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.689-694
    • /
    • 2008
  • This paper proposes a roll rate estimation method for spinning vehicles. The carrier phase and frequency variations caused by spinning of vehicles are observed and the roll rate estimator is designed on the observation. The roll rate estimator consists of phase detector and zero crossing counter. The phase detector computes phase variation using in-phase and quadrature value from the correlator. By using zero crossing counter, the roll rate can be estimated since the output of phase detector is changed in proportion to the roll rate. Experiment a results show that estimated roll rate error is smaller than 0.0578Hz.

Development of Three Phase Optimal Power Flow for Distributed Generation Systems (분산전원계통을 위한 3상 최적조류계산 프로그램 개발)

  • Song, Hwa-Chang;Cho, Sung-Koo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.882-889
    • /
    • 2010
  • This paper presents a method of finding the optimal operating point minimizing a given objective function with 3 phase power flow equations and operational constraints, called 3 phase optimal power flow (3POPF). 3 phase optimal power flow can provide operation and control strategies for the distribution systems with distributed generation assets, which might be frequently in unbalanced conditions assuming that high penetration rate of renewable energy sources in the systems. As the solution technique for 3POPF, this paper adopts a simulation-based method of particle swarm optimization (PSO). In the PSO based 3POPF, a utility function needs to be defined for evaluation of the degree in operational improvement of each particle's current position. To evaluate the utility function, in this paper, NR-based 3 phase power flow algorithm was developed which can deal with looped distributed generation systems. In this paper, illustrative examples with a 5-bus and a modified IEEE 37-bus test systems are given.

ESPI Simulation for the Vibration Modes of the Thin Right-Angled Plate (얇은 직각판의 진동 모드에 대한 ESPI 시뮬레이션)

  • 장순석
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.509-516
    • /
    • 1999
  • The ESPI (Electronic Speckle Pattern Interferometry) algorithm has been simulated to calculate vibrational modes of a thin right-angled STS304 plate. The phase transformation of the reference wave of the ESPI is carried out only one time during vibration in order to clarify ESPI speckle patterns. Two dimensional vibrational modes are calculated from one ESPI pattern before vibration onset and two ESPI patterns during vibrations but with and without the phase transformation. The ESPI harmonic results are compared with those derived from the finite element method (FEM), and they agree very well. Additionally a phase unwrapping algorithm has been newly developed to derive a displacement map from an ESPI phase map.

  • PDF

Characteristic Analysis of Single Phase SRM Using Fourier Series (퓨리에 급수를 이용한 단상 SRM 특성 해석)

  • Lee, Jong-Han;Lee, Eun-Woong;Kim, Yong-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.80-82
    • /
    • 2004
  • The single phase switched reluctance motor(SRM) is more simpler and robust in the structure than poly phase SRM. It has the merits that it reduces the switching elements and the energy density per volume is very high. Recently, it has been researched and developed in various types and starting method due to the technique of power electronics and the computer added design. This paper presents a analytical representation of the phase inductance of a single phase SRM, as function of position and current, taking into account the non-linearity of the magnetic circuit. the method is based on Fourier series expansion. Analytical expressions for the calculation of instantaneous phase inductance, flux linkage, coenergy and electromagnetic torque as a function of rotor position and winding currents are derived.

  • PDF

Phase Error Analysis in Shearography Using Wave Plates (파장판를 이용한 스펙클패턴 전단간섭법에 있어서의 위상오차 해석)

  • Kim, Soo-Gil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.34-39
    • /
    • 2005
  • We presented the method to obtain four speckle patterns with relative phase shift of ${\pi}/2$ by passive devices such as wave plate and polarizer, and calculate the phase at each point of the speckle pattern in shearography using Wollaston prism. And, we analyzed the phase error caused by wave plates used in the proposed method by Jones matrix.

Candelilla Wax Nanoemulsions Prepared by Phase Inversion Composition (PIC) Method

  • Kim, Eun-Hee;Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.203-209
    • /
    • 2014
  • Candelilla wax-in-water nanoemulsions stabilized by Span 80/Tween 80 were prepared by the phase inversion composition (PIC) method. Stable nanoemulsions with droplet diameters below 50 nm could be formed when the hydrophilic-lipophilic balance (HLB) values were between 13.5 and 14.5, surfactant concentration was 5.0 wt%, and the surfactant-wax ratio was 1:1. Increased emulsification temperature and cooling rate were found to improve the emulsion properties. Process of PIC (adding aqueous phase to the wax phase) produced smaller droplet size nanoemulsion compared to the process of adding wax phase to the aqueous phase. The stability of these nanoemulsions was assessed by following the change in droplet diameters with time of storage at room temperature (${\sim}25^{\circ}C$). The size remained constant during 2 months storage time.