• Title/Summary/Keyword: Phase identification

Search Result 685, Processing Time 0.02 seconds

Estimating Risk Interdependency Ratio for Construction Projects: Using Risk Checklist in Pre-construction Phase

  • Kim, Junyoung;Lee, Hyun-Soo;Park, Moonseo;Kwon, Nahyun
    • Architectural research
    • /
    • v.21 no.2
    • /
    • pp.49-57
    • /
    • 2019
  • Risk assessment during pre-construction phase is important due to the uncertainty of the risks that may exist in projects. Risk checklist is a method to systematically classify and organize the risks that have been experienced in the past, and to identify the risk factors that may be present in the future projects. In addition, risk value assessment based on checklists plays a key role in risk management, and various risk assessment researches have been conducted to carry out this systematically. However, previous approaches have limitations in common, this is because risk values are evaluated individually in risk checklists, which ignore interdependencies among risk factors and neglect the emergence of co-occurrence of risks. Hence, when multiple risk factors cooccur, they cannot be far off from the conventional method of summing the total risk value to establish the risk response strategy. Most of risk factors are interdependent and may have multiple effects if occurred than expected. In particular, specific cause can be overlapped if multiple risks co-occur, and this may result in overestimation of the risk response for the future project. Thus, the objective of this research is to propose a model to help decision makers to quantify the risk value reflecting the interdependency during the identification phase using existing risk checklist that is currently being practiced in actual construction projects. The proposed model will provide the guideline to support the prediction and identification of the interdependency of risks in practice. In addition, the better understanding and prediction of the exceeding risk response by co-occurring risks during the risk identification phase for decision makers.

A Study on the Phase Identification of Dental Amalgams (의과용 아말감의 합금상 판별에 관한 연구)

  • 이규환;신명철
    • Journal of Biomedical Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.39-46
    • /
    • 1981
  • Microstructural phases of the dental amalgams have been studied by optical microscope, scanning electron microprobe and X-ray diffractometer. r1 ($Ag_2Hg_3$) phase and r2 ($Sn_{7-8}Hg$) phase are found on conventional compositioned alloys. On high copper single compositioned alloy, rl ($Ag_2Hg_3$) phase and V ($Cu_6Sn_5$) phase are found but brittle r2 ($Sn_(7-8)Hg$) phase.

  • PDF

Nonlinear Dynamic Analysis of Cantilever Tube Conveying Fluid with System Identification

  • Lim, Jae-Hoon;Jung, Goo-Choong;Park, Yeon-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1994-2003
    • /
    • 2003
  • The vibration of a flexible cantilever tube with nonlinear constraints when it is subjected to flow internally with fluids is examined by experimental and theoretical analysis. These kinds of studies have been performed to find the existence of chaotic motion. In this paper, the important parameters of the system leading to such a chaotic motion such as Young's modulus and the coefficient of viscoelastic damping are discussed. The parameters are investigated by means of system identification so that comparisons are made between numerical analysis using the design parameters and the experimental results. The chaotic region led by several period-doubling bifurcations beyond the Hopf bifurcation is also re-established with phase portraits, bifurcation diagram and Lyapunov exponent so that one can define optimal parameters for system design.

A Technology Mining Framework in Developing New Wireless (이동통신 서비스 개발을 위한 유망기술 발굴 프레임워크)

  • Lee, Young-Ho;Shim, Hyun-Dong;Kim, Young-Wook;Byun, Jae-Wan
    • Korean Management Science Review
    • /
    • v.26 no.3
    • /
    • pp.101-115
    • /
    • 2009
  • In this paper, we propose a technology mining framework for mobile communication industry. We develop a two phase approach of new technology identification and service enhancement. The new technology identification process consists of R&D issues analysis, technology theme design, and emerging technology sampling. On the other hand, existing service enhancement process has technology landscaping, keyword based search, and technological growth analysis. By implementing these two phase frameworks, we develop a technology portfolio for mobile communication industry.

Blind identification of nonminimum phase FIR systems from second-order statistics and absolute mean (2차 통계값과 절대평균을 이용한 비최소 위상 FIR 시스템의 미상 식별)

  • 박양수;박강민;송익호;김형명
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.357-364
    • /
    • 1996
  • This paper presents a new blind identification method of nonminimum phase FIR systems without employing higher-order statistics. It is based on the observation that the absolute mean of a second-order white sequence can measure the higher-order whiteness of the sequence. The proposed method may be a new alternative way to the higher-order statistics approaches. Some computer simulations show that the absolute mean is exactly estimated and the proposed method can overcome the disadvantages of the higher-order statistics approaches.

  • PDF

Output-only modal identification approach for time-unsynchronized signals from decentralized wireless sensor network for linear structural systems

  • Park, Jae-Hyung;Kim, Jeong-Tae;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • v.7 no.1
    • /
    • pp.59-82
    • /
    • 2011
  • In this study, an output-only modal identification approach is proposed for decentralized wireless sensor nodes used for linear structural systems. The following approaches are implemented to achieve the objective. Firstly, an output-only modal identification method is selected for decentralized wireless sensor networks. Secondly, the effect of time-unsynchronization is assessed with respect to the accuracy of modal identification analysis. Time-unsynchronized signals are analytically examined to quantify uncertainties and their corresponding errors in modal identification results. Thirdly, a modified approach using complex mode shapes is proposed to reduce the unsynchronization-induced errors in modal identification. In the new way, complex mode shapes are extracted from unsynchronized signals to deal both with modal amplitudes and with phase angles. Finally, the feasibility of the proposed approach is evaluated from numerical and experimental tests by comparing with the performance of existing approach using real mode shapes.

Fault Detection and Diagnosis System for a Three-Phase Inverter Using a DWT-Based Artificial Neural Network

  • Rohan, Ali;Kim, Sung Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.238-245
    • /
    • 2016
  • Inverters are considered the basic building blocks of industrial electrical drive systems that are widely used for various applications; however, the failure of electronic switches mainly affects the constancy of these inverters. For safe and reliable operation of an electrical drive system, faults in power electronic switches must be detected by an efficient system that is capable of identifying the type of faults. In this paper, an open switch fault identification technique for a three-phase inverter is presented. Single, double, and triple switching faults can be diagnosed using this method. The detection mechanism is based on stator current analysis. Discrete wavelet transform (DWT) using Daubechies is performed on the Clarke transformed (-) stator current and features are extracted from the wavelets. An artificial neural network is then used for the detection and identification of faults. To prove the feasibility of this method, a Simulink model of the DWT-based feature extraction scheme using a neural network for the proposed fault detection system in a three-phase inverter with an induction motor is briefly discussed with simulation results. The simulation results show that the designed system can detect faults quite efficiently, with the ability to differentiate between single and multiple switching faults.

Reverse-Phase HPLC Method for Identification of Diastereomeric Constituents from Sasa borealis (Sasa borealis의 Diastereomeric 성분들의 역상 고속액체크로마토그래프 분석방법)

  • Jeong Yeon Hee;Lee Jun;Kwon Youngjoo;Seo Eun-Hyoung
    • YAKHAK HOEJI
    • /
    • v.50 no.1
    • /
    • pp.21-25
    • /
    • 2006
  • Reiterated normal-phase column chromatography lead to the isolation and purification of six known compounds but for the first time from the whole plant of Sasa borealis (Hack.) Makino (Gramineae): tricin 4'-O-(erythro-${\beta}$-guaia-cylglyceryl) ether (1), tricin 4'-O-(threo-${\beta}$-guaiacylglyceryl) ether (2), tricin 4'-O-[erythro-${\beta}$-guaiacyl-(9'-O-acetyl)-glyceryl] ether (3), tricin 4'-O-[threo-${\beta}$-guaiacyl-(9'-O-acetyl)-glyceryl] ether (4), (-)-pinoresinol (5), and vanillin (6). The structures of the compounds (1-6) were established based on interpretation of high resolution NMR (COSY, HSQC, HMBC, and NOESY) spectral data. In particular, compounds 1 and 3 were diastereomers of compounds 2 and 4, respectively. These two sets of diastereomers were able to be simultaneously identified and quantified by a gradient reversed-phase HPLC method with UV photodiode array, This sensitive HPLC method is noteworthy as a simultaneous separation and identification method to test the extract of the family Gramineae which contains these compounds.

Fault Location for Incomplete-Journey Double-Circuit Transmission Lines on Same Tower Based on Identification of Fault Branch

  • Wang, Shoupeng;Zhao, Dongmei;Shang, Liqun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1754-1763
    • /
    • 2017
  • This paper analyses the characteristics of incomplete-journey double-circuit transmission lines on the same tower formed by single-circuit lines and double-circuit lines, and then presents a fault location algorithm based on identification of fault branch. With the relationship between the three-phase system and the double-circuit line system, a phase-mode transformation matrix for double-circuit lines can be derived. Based on the derived matrix, the double-circuit lines with faults can be decoupled, and then the fault location for an incomplete-journey double-circuit line is achieved by using modal components in the mode domain. The algorithm is divided into two steps. Firstly, the fault branch is identified by comparing the relationships of voltage amplitudes at the bonding point. Then the fault location, on the basis of the identification result, is calculated by using a two-terminal method, and only the fault distance of the actual fault branch can be obtained. There is no limit on synchronization of each terminal sampling data. The results of ATP-EMTP simulation show that the proposed algorithm can be applied within the entire line and can accurately locate faults in different fault types, fault resistances, and fault distances.

A Strategy for Phase Identification of Precipitates in High Al-containing Austenitic and Ferritic Steels Using Electron Diffraction

  • Heo, Yoon-Uk
    • Applied Microscopy
    • /
    • v.44 no.4
    • /
    • pp.144-149
    • /
    • 2014
  • A strategy for phase identification of precipitates in high Al-containing austenitic and ferritic steels using electron diffraction (ED) is studied. Comparative studies of the various Al-containing precipitates (k-carbide, $Ni_3Al$, $Fe_3Al$, FeAl) show the similarities of crystal structure and lattice parameter. However, the slight differences of lattice parameter and structure display characteristic ED patterns (EDPs) which can be identified. $L1_2$ k-carbide and $Ni_3Al$ can be differentiated by the length of ${\rightarrow}_g$ (the reciprocal lattice vector), even though they show perfectly identical shapes of EDPs. $DO_3$ $Fe_3Al$ and $B_2$ FeAl show the characteristic EDs in [110] and [112] beam directions due to the differences of Fe site occupancies in unit cells. k-carbide, $Ni_3Al$, and FeAl show also the similar EDs in [112], [112], and [110] beam directions, respectively. All the possible similarities of EDs among each phases and the strategy for phase identification are discussed on the bases of kinematical ED simulation.